• 제목/요약/키워드: Boom Structures

검색결과 26건 처리시간 0.023초

용접부 피로강도를 고려한 굴삭기 붐 구조물 설계(II) (Design of Excavator Boom Structure Based on Fatigue Strength of Weldment(II))

  • 박상철
    • Journal of Welding and Joining
    • /
    • 제29권4호
    • /
    • pp.61-66
    • /
    • 2011
  • The purpose of this study is to develop improved boom structures with reliable fatigue strength of weldment and lower production cost. For that purpose, multi-body dynamic analysis was performed to evaluate forces acting on arm & boom cylinders and joints of boom structure during operation of an excavator for three working postures, then stress analysis was made to investigate stress distribution around diaphragms at the bottom plate of boom structures which was known to be susceptible to fatigue failures of welded joints, and finally boom structures with optimum arrangement of diaphragms was proposed. This work mainly consists of the following two parts: part 1 focuses on multi-body dynamic analysis of excavators during operation and part 2 includes evaluations of fatigue strength of welded joints for modified boom structures.

용접부 피로강도를 고려한 굴삭기 붐 구조물 설계(I) (Design of Excavator Boom Structure Based on Fatigue Strength of Weldment(I))

  • 박상철
    • Journal of Welding and Joining
    • /
    • 제28권5호
    • /
    • pp.58-63
    • /
    • 2010
  • The purpose of this study is to develop improved boom structures with reliable fatigue strength of weldment and lower production cost. For that purpose, multibody dynamic analysis was performed to evaluate forces acting on arm & boom cylinders and joints of boom structure during operation of an excavator for three working postures, then stress analysis was made to investigate stress distribution around diaphragms at the bottom plate of boom structures which was known to be susceptible to fatigue failures of welded joints, and finally boom structure with optimum arrangement of diaphragms was proposed. This work basically consists of the following two parts: part 1 focuses on multibody dynamic analysis of excavators during operation and part 2 includes evaluations of fatigue strength of welded joints for modified boom structures.

Dynamic analysis of a cylindrical boom based on Miura origami

  • Cai, Jianguo;Zhou, Ya;Wang, Xinyu;Xu, Yixiang;Feng, Jian
    • Steel and Composite Structures
    • /
    • 제28권5호
    • /
    • pp.607-615
    • /
    • 2018
  • The dynamic behavior of the deployment and folding process of a foldable boom based on the Miura origami pattern is investigated in this paper. Firstly, mechanical behavior of a single storey during the motion is studied numerically. Then the deployment and folding of a multi-storey boom is discussed. Moreover, the influence of the geometry parameters and the number of Miura-ori elements n on the dynamic behavior of the boom is also studied. Finally, the influence of the imperfection on the dynamic behavior is investigated. The results show that the angles between the diagonal folds and horizontal folds will have great effect on the strains during the motion. A bistable configuration can be obtained by choosing proper fold angles for a given multi-storey boom. The influence of the imperfection on the folding behavior of the foldable mast is significant.

헬리곱터 꼬리 날개의 최적 설계 (Optimal Design of Helicopter Tailer Boom)

  • 한석영
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.419-424
    • /
    • 1999
  • In this paper, the comparison of the first order approximation schemes such as SLP (sequential linear programming), CONLIN(convex linearization), MMA(method of moving asymptotes) and the second order approximation scheme, SQP(sequential quadratic programming) was accomplished for optimization of and nonlinear structures. It was found that MMA and SQP(sequential quadratic programming) was accomplished for optimization of and nonlinear structures. It was found that MMA and SQP are the most efficient methods for optimization. But the number of function call of SQP is much more than that of MMA. Therefore, when it is considered with the expense of computation, MMA is more efficient than SQP. In order to examine the efficiency of MMA for complex optimization problem, it was applied to the helicopter tail boom considering column buckling and local wall buckling constraints. It is concluded that MMA can be a very efficient approximation scheme from simple problems to complex problems.

  • PDF

3-방향 직물 복합재료 모델링 및 붐 구조물의 거동 연구 (A Study on the Modeling for Boom Structural Behaviors of the Triaxial Woven Fabric Composite)

  • 변선우;양지윤;이수용;노진호
    • 항공우주시스템공학회지
    • /
    • 제16권6호
    • /
    • pp.99-105
    • /
    • 2022
  • 본 논문은 3-방향 직물 복합재료의 대표 단위 셀의 모델링 방법에 대해 검증하여 붐 구조물의 기계적 특성에 대해 연구하였다. 대표 단위 셀의 모델링에는 빔 요소에 주기적 경계 조건을 이용하여 인장, 전단, 굽힘, 비틀림의 거동을 모사한 해석을 통해 ABD 행렬을 구했다. 유한 요소 프로그램을 통한 인장 해석과 만능재료 시험기를 이용한 실험 결과를 비교하여 ABD 행렬을 검증하였다. 3-방향 직물 복합재료 붐 구조물의 기계적 특성을 굽힘 해석과 실험을 통해 확인하였다. 이를 통해 3-방향 직물 복합재료를 이용한 구조물 거동 특성을 확인하고자 한다.

유한요소해석을 통한 중량물 이동대차 시저스붐의 구조 및 강도 해석 (Structure and Strength Analysis of Scissors Boom of Heavy Load Transporter through Finite Element Analysis)

  • 임현호;양창민;최권웅;최대우
    • 산업경영시스템학회지
    • /
    • 제46권spc호
    • /
    • pp.61-67
    • /
    • 2023
  • Special equipment used for snow removal is only used in the winter and must be moved into storage during non-winter seasons. However, when moving heavy equipment using a forklift within a limited space, safety accidents may occur due to deformation and damage due to the worker's limited visibility and excessive loading of heavy objects. In this study, the scissors boom of the developed heavy load transporter was conducted in two cases: link structural analysis and position-based structural analysis. In detail, the link structural analysis covers four cases of stress and safety factor according to material and thickness to optimize the specifications of the material selected during development, and the structural analysis according to position covers two cases before and after the lift, when maximum stress concentration is achieved. Safety was evaluated through finite element analysis. As a result of the study, when manufacturing a scissors boom type heavy load transporter that can withstand a load of 10 tons, the link showed safety at SS400 4.5mm or higher, and reinforcement is needed in the upper and lower structures, so it is judged to be useful in applying materials according to the load.

과하중 상태에 있는 복합 굴절차의 구조 해석 (Structural Analysis of Overloaded Multi-aerial Platform)

  • 소수현;강성수
    • 한국생산제조학회지
    • /
    • 제22권6호
    • /
    • pp.901-907
    • /
    • 2013
  • The development of high-rise firefighting vehicles warrants thorough structural analysis for ensuring vehicle stability. A few structural analyses were carried out using CAD data, material properties, load conditions, and boundary conditions for evaluating the structural stability of an overloaded multi-aerial platform for firefighting and rescue. Structural analysis was performed with an analytical model consisting of a turntable, six booms, two jib booms, and a basket structure. This model was operated in eight modes. All simulation was performed using NASTRAN, a commercial code. As a result, we confirm that the position of local stress exceeds that of the yield strength. Therefore, stress concentration relaxation is possible by introducing reinforcing boom structures, changing the shape, or imparting a larger moment of inertia to the booms' cross sections.

Thermoelastic Behaviors of Fabric Membrane Structures

  • Roh, Jin-Ho;Lee, Han-Geol;Lee, In
    • Advanced Composite Materials
    • /
    • 제17권4호
    • /
    • pp.319-332
    • /
    • 2008
  • The thermoelastic behaviors of an inflatable fabric membrane structure for use in a stratospheric airship envelope are experimentally and numerically investigated. Mechanical tensile properties of the membrane material at room, high, and low temperatures are measured using an $Instron^{(R)}$ universal testing machine and an $Instron^{(R)}$ thermal chamber. To characterize the nonlinear behavior of the inflated membrane structure due to wrinkling, the bending behavior of an inflated cylindrical boom made of a fabric membrane is observed at various pressure levels. Moreover, the envelope of a stratospheric airship is numerically modeled based on the thermoelastic properties of the fabric membrane obtained from experimental data, and the wrinkled deformed shape induced by a thermal load is analyzed.

단순형태 세일의 변형에 대한 유체-구조 연성 해석 (Fluid-Structure Interaction Analysis on the Deformation of Simplified Yacht Sails)

  • 박세라;유재훈;송창용
    • 대한조선학회논문집
    • /
    • 제50권1호
    • /
    • pp.33-40
    • /
    • 2013
  • Since most of yacht sails are made of thin fabric, they form cambered sail shape that can efficiently generate lift power by aerodynamic interaction and by external force delivered from supporting structures such as mast and boom. When the incident flow and external force alter in terms of volume or condition, the shape of sail also change. This deformation in shape has impact on the peripheral flow and aerodynamic interaction of the sail, and thus it is related to the deformation of the sail in shape again. Therefore, the precise optimization of aerodynamic performance of sail requires fluid-structure interaction (FSI) analysis. In this study, the simplified sail without camber was under experiment for one-way FSI that uses the result of flow analysis to the structural analysis as load condition in an attempt to fluid-structure interaction phenomenon. To confirm the validity of the analytical methods and the reliability of numerical computation, the difference in deformation by the number of finite element was compared. This study reproduced the boundary conditions that sail could have by rigs such as mast and boom and looked into the deformation of sail. Sail has non-linear deformation such as wrinkles because it is made of a thin fabric material. Thus non-linear structural analysis was conducted and the results were compared with those of analysis on elastic material.