• Title/Summary/Keyword: Bonggil Beach

Search Result 4, Processing Time 0.018 seconds

Field Observations of Wave-Induced Currents at Bonggil Beach (동해 봉길해안에서 해빈류의 현지 관측)

  • LEE YOUNG KWEON;YANG HAE YANG;PARK IL HEUM;LEE JONG SUP;KIM JONG KYU
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.145-150
    • /
    • 2004
  • Using the DGPS of high precision take in a bouy, the wave-induced currents were observed by Lagrange method at Bonggile beach of the East Sea. At June, the northward wave-induced currents were dominated by the SSW waves. And the southward flaws were appeared at September and November. When 0.2-0.4m wave heights attacked the beach, the mean speed of the wave-induced currents was 0.15-0.3m/s at June and September, when the 1.0-1.6m wave heights incidented at November, that was about 0.3-0.6m/s. On the other hand, the observed results were compared with the simulated results which were solved by the 2-D model, WICU-DIVAST. It was showed the reasonable agreements.

  • PDF

A Comparison on the Forest Type of Coastal Disaster Prevention Forest Between the Coastal Areas in Korea (우리나라 해안별 해안방재림의 유형특성 비교)

  • Kim, Chan-Beom;Park, Ki-Hyung;Lee, Chang-Woo;Youn, Ho-Joong;Kim, Kyongha
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.4
    • /
    • pp.564-573
    • /
    • 2014
  • The objective of this study was to select a representative coastal disaster prevention forest type for each coastal area. In this study, we used cluster analysis with the results obtained from investigation for density of growing stock, tree height, DBH, and forest width and length of major coastal disaster prevention forests distributed in the west, the south, and the east coasts. The results showed that the coastal disaster prevention forests for each coast were classified into two types: a forest type with small DBH and high growing stock density (W1) or with high tree height (W2) in the west coast, a forest type with small tree height (S1) or with large DBH (S2) in the south coast, and a forest type with small growing stock density (E1) or with small tree height and low DBH (E2) in the east coast. The coastal disaster prevention forests located in Gurye beach (Hwangchon-ri, Wonbuk-myeon, Taean-gun, Chungcheongnam-do) and in Gohsapo beach (Unsna-ri, Byeonsan-myeon, Buan-gun, Jeollabuk-do) were selected as the representative forests of W1 and W2, respectively. In addition, the coastal disaster prevention forests located in Namyang beach (Namyang-ri, Seolcheon-myeon, Namhae-gun, Gyeongsangnam-do) and in Donggo beach (Donggo-ri, Sinji-myeon, Wando-gun, Jeollanam-do) were selected as the representative forests of S1 and S2, respectively. Last, the coastal disaster prevention forests located in Bonggil beach (Bonggil-ri, Yangbuk-myeon, Gyeongju-si, Gyeongsangbuk-do) and in Anmeok beach (Gyeonso-dong, Gangneung-si, Gangwon-do) were selected as the representative forests of E1 and E2, respectively. Our finding is expected to be used as baseline data in establishing the most appropriate coastal disaster prevention forest for each coast.

Long-term Changes of Shoreline at the East Coast in South Korea 2 - South East Coast (우리나라 동해안 해안선의 장기적 변화 2 -남부 동해안)

  • Kim, Dae Sik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.3
    • /
    • pp.27-39
    • /
    • 2013
  • This study grasped long-term changing tendency of shoreline during lately about 30 years in five region of South East coast, and analyzed long-term changing tendency of East coast shoreline and the factors that synthesized studies of Central and South East coast. As a result of calculating of shoreline variations using DSAS, each shoreline of Mangyangjeong and Josa region regressed mean 28.9m and 6.4m, but each shoreline of Goraebul, Daejin and Bonggil region progressed mean 25.0m, 10.6m and 18.8m. Synthesizing changing tendency of East coast shoreline, 1) progressive and regressive zones of shoreline in all regions seem to repeat. 2) looking at shoreline of south zone adjacent to lately constructed or extended breakwater progressed, because it is thought due to effect of a longshore current flowing north. 3) zones using beach relatively tends to regress shorelines. 4) progress and regress of shoreline in zones including estuary of stream are various features as change of deposit supply from a upstream region.