• Title/Summary/Keyword: Bone resorption pit

Search Result 19, Processing Time 0.028 seconds

The Effect of Ampelopsis japonica (Thunb.) Makino on Osteoclastogenesis and Expression of Osteoclast-Related Gene (백렴(白蘞)의 파골세포 분화 및 관련 유전자 발현 억제에 미치는 영향)

  • Hongsik Kim;Sumin Lee;Minsun Kim;Jae-Hyun Kim;Yejin Kang;Seoung Jun Kwon;Youngwoo Nam;Seungwoo Yoo;Hong-Seok Choi;SeonJin Huh;Youngjoo Sohn;Hyuk-Sang Jung
    • The Korea Journal of Herbology
    • /
    • v.38 no.5
    • /
    • pp.9-19
    • /
    • 2023
  • Objectives : Osteoporosis is a systemic skeletal disorder characterized by reduced bone mineral density and increased risk of fractures. Bisphosphonates and selective estrogen receptors, which are bone resorption inhibitors that are currently widely used as osteoporosis treatments, show serious side effects when administered for a long time. Research on bone resorption inhibitors that complement the problems of existing treatments is needed. The purpose of this study was to investigate the effect of inhibiting osteoclast differentiation and activity on the tuberous root of Ampelopsis japonica (Thunb.) Makino (AM). Methods : After extracting AM using distilled water and ethanol, the inhibitory effects of the two solvents on osteoclast differentiation were compared using the RANKL-induced in vitro experimental model and the TRAP assay kit. The impact of AM on bone resorption was investigated through the pit formation assay, and its effect on F-actin formation was assessed through fluorescent staining. Additionally, protein and mRNA expression levels of osteoclast differentiation markers (NFATc1, c-Fos, TRAP and ATP6v0d2) and resorption markers (MMP-9, CTK, and CA2) were analyzed via western blot and RT-PCR. Results : AM treatment significantly decreased the number of TRAP-positive cells and pit formation area. Furthermore, AM suppressed both the protein and mRNA expression of NFATc1 and c-Fos, key transcription factors involved in osteoclast differentiation and it downregulated the expression of osteoclast-associated genes such as TRAP, CTK, MMP-9, CA2, and ATP6v0d2. Conclusions : These results suggest that AM can inhibit bone resorption and osteoclast differentiation, indicating its potential for use in the treatment and prevention of osteoporosis.

Effects of Baicalin on the differentiation and activity of preosteoclasts

  • Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.81-86
    • /
    • 2009
  • Baicalin is a flavonoid purified from the medicinal plant Scutellaria baicalensis. It has been reported that baicalin exhibits antibacterial, anti-inflammatory and analgesic effects. The present study was undertaken to determine the underlying cellular mechanisms of baicalin action in preosteoclasts. The effects of this flavonoid on preosteoclasts were determined by measuring osteoclast generation and osteoclast activity in macrophage-colony stimulating factor (M-CSF)-dependent bone marrow cells (MDBMCs) and in co-cultures of MDBMCs and osteoblasts. Osteoclast generation was assayed by measuring the number of tartrateresistant acid phosphatase (TRAP) (+) multinucleated cells after culture. Osteoclast activity was assayed by measuring the area of the resorption pit after culture. We found that osteoclast generation was induced by M-CSF and receptor activator of NF-kB ligand (RANKL), and by the 1.25-dihydroxycholecalciferol in our cultures. Baicalin decreased both osteoclast generation and activity in MDBM cultures and co-cultures indicating that it may inhibit bone resorption.

Aster saponin A2 inhibits osteoclastogenesis through mitogen-activated protein kinase-c-Fos-NFATc1 signaling pathway

  • Su, Xiang-Dong;Yang, Seo Y;Shrestha, Saroj K;Soh, Yunjo
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.47.1-47.11
    • /
    • 2022
  • Background: In lipopolysaccharide-induced RAW264.7 cells, Aster tataricus (AT) inhibits the nuclear factor kappa-light-chain-enhancer of activated B cells and MAPKs pathways and critical pathways of osteoclast development and bone resorption. Objectives: This study examined how aster saponin A2 (AS-A2) isolated from AT affects the processes and function of osteoclastogenesis induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264.7 cells and bone marrow macrophages (BMMs). Methods: The cell viability, tartrate-resistant acid phosphatase staining, pit formation assay, polymerase chain reaction, and western blot were carried out to determine the effects of AS-A2 on osteoclastogenesis. Results: In RAW264.7 and BMMs, AS-A2 decreased RANKL-initiated osteoclast differentiation in a concentration-dependent manner. In AS-A2-treated cells, the phosphorylation of ERK1/2, JNK, and p38 protein expression were reduced considerably compared to the control cells. In RAW264.7 cells, AS-A2 suppressed the RANKL-induced activation of osteoclast-related genes. During osteoclast differentiation, AS-A2 suppressed the transcriptional and translational expression of NFATc1 and c-Fos. AS-A2 inhibited osteoclast development, reducing the size of the bone resorption pit area. Conclusion: AS-A2 isolated from AT appears to be a viable therapeutic therapy for osteolytic illnesses, such as osteoporosis, Paget's disease, and osteogenesis imperfecta.

Psoraleae Semen Ethanol Extract Inhibits RANKL-Induced Osteoclast Differentiation and Osteoclast Specific Genes Expression (보골지 추출물이 파골세포 분화 및 골흡수 관련 유전자 발현에 미치는 영향)

  • Ryu, Gwang-hyun;Kim, Eom Ji;Kim, Minsun;Kim, Jae-Hyun;Lee, Yujin;Jin, Dae-hwan;Sohn, Youngjoo;Jung, Hyuk-Sang
    • Korean Journal of Acupuncture
    • /
    • v.38 no.3
    • /
    • pp.140-150
    • /
    • 2021
  • Objectives : The increase of osteoclasts could cause osteoporosis and bone-related diseases. Also, the inhibition of osteoclast differentiation is important in treating bone-related diseases. Traditionally, Psoraleae Semen has been used for geriatric diseases, aging and musculoskeletal diseases. The purpose of this study is to investigate the effect of Psoraleae Semen ethanol extract (PS) on osteoclast differentiation and its function. Methods : To confirm the effect of PS on osteoclastogenesis and bone resorption activity, various levels of concentrations of PS (5, 10, 20 and 40 ㎍/ml) were tested on RAW 264.7 cells cultured with RANKL. We measured tartarate-resistant acid phosphatase (TRAP)-positive cells, TRAP activity, pit formation and F-actin ring formation. The expressions of nuclear factor of activated T-cells (NFATc1) and c-Fos were confirmed through western blot and reverse transcription- polymerase chain reaction (RT-PCR). Also, the expression of bone resorption and fusion-related genes in osteoclast was confirmed by RT-PCR. Results : PS decreased the number of TRAP-positive cells and the TRAP activity. In addition, PS significantly inhibited the formation of pit and F-actin ring. Furthermore, PS decreased the expression of osteoclast related genes. Conclusions : PS inhibits osteoclast differentiation and bone resorption ability through inhibition of the expression of osteoclast-related genes. This indicates that PS may be a potential therapeutic agent to osteoporosis by suppressing osteoclastogenesis.

DW1350, a Newly Synthetic Anti-osteoporotic Agent: 1. DW-1350 Inhibited Bone Resorption and Promoted Bone Formation

  • Lee, Jin-Soo;Whang, Yun-Ha;Ahn, Seok-Hoon;PanSoo;Jin, Sang-Mi;Yi, Sun-Shin;Jung, Young-Ho;Suh, Hong-Suk;Ryu, Jei-Man
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.154.2-155
    • /
    • 2003
  • Recently, we developed a new anti-osteoporotic agent, DW-1350, which not only inhibited osteoclast formation but also induced osteoblast differentiation through the in vitro randomized screening studies. We identified inhibitory activities of DW-1350 for each step of osteoclast differentiation, fusion and pit formation process in co-culture system with mouse bone marrow and primary osteoblasts. (omitted)

  • PDF

Ecklonia cava Extract Containing Dieckol Suppresses RANKL-Induced Osteoclastogenesis via MAP Kinase/NF-κB Pathway Inhibition and Heme Oxygenase-1 Induction

  • Kim, Seonyoung;Kang, Seok-Seong;Choi, Soo-Im;Kim, Gun-Hee;Imm, Jee-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • Ecklonia cava, an edible marine brown alga (Laminariaceae), is a rich source of bioactive compounds such as fucoidan and phlorotannins. Ecklonia cava extract (ECE) was prepared using 70% ethanol extraction and ECE contained 67% and 10.6% of total phlorotannins and dieckol, respectively. ECE treatment significantly inhibited receptor activator of nuclear $factor-{\kappa}B$ ligand (RANKL)-induced osteoclast differentiation of RAW 264.7 cells and pit formation in bone resorption assay (p <0.05). Moreover, it suppressed RANKL-induced $NF-{\kappa}B$ and mitogen-activated protein kinase signaling in a dose dependent manner. Downregulated osteoclast-specific gene (tartrate-resistant acid phosphatase, cathepsin K, and matrix metalloproteinase-9) expression and osteoclast proliferative transcriptional factors (nuclear factor of activated T cells-1 and c-fos) confirmed ECE-mediated suppression of osteoclastogenesis. ECE treatment ($100{\mu}g/ml$) increased heme oxygenase-1 expression by 2.5-fold and decreased intercellular reactive oxygen species production during osteoclastogenesis. The effective inhibition of RANKL-stimulated osteoclast differentiation and oxidative stress by ECE suggest that ECE has therapeutic potential in alleviating osteoclast-associated disorders.

Forsythiae Fructus Extract Inhibits RANKL-Induced Osteoclast Differentiation and Prevent Bone Loss in OVX-Induced Osteoporosis Rat (연교의 파골세포 분화 및 골 흡수 억제 기전 연구)

  • Eom, Ji-Whan;Kim, Jae-Hyun;Kim, Minsun;Kim, Sangwoo;Shin, Hwajeong;Jung, Hyuk-Sang;Sohn, Youngjoo
    • Korean Journal of Acupuncture
    • /
    • v.36 no.2
    • /
    • pp.115-126
    • /
    • 2019
  • Objectives : Osteoporosis is a condition characterized by low bone mass and increased bone fragility. It has become a major problem of senior citizens. The purpose of this study is to experiment the effect of water extract of Forsythiae Fructus (wFF) on osteoclast differentiation; and the other purpose is to examine the effect of wFF on osteoporosis in ovariectomized rat. Methods : To investigate the effect of wFF on osteoclast differentiation and activity, RAW 264.7 cells were used. The number of TRAP positive cell, TRAP activity, pit area, mRNA expression of makers (RANK, TRAP, CA II, CTK, MMP-9, NFATc1, c-Fos), protein expression of makers (NFATc1, c-Fos) were investigated. For in vivo study, 40 female Sprague-Dawley (SD) rats were induced osteoporosis by ovariectomy (OVX) and then tested for anti-osteoporosis effect by administration of wFF. Results : wFF suppressed osteoclatogenesis, TRAP activity and pit area formation. Moreover, wFF decreased the expression of master differentiation factors (NFATc1, c-Fos) and also reduced the osteoclastogenesis-related markers (TRAP, CA II, CTK, MMP-9). These suggest that wFF inhibit osteoclasts differentiation and bone resorption. In the OVX rat model, wFF inhibited decreasing of BMD and trabecular area. Conclusions : Forsythiae Fructus should be effective for osteoporosis prevention and treatment.

Gentianae Macrophyllae Radix Water Extract Inhibits RANKL-Induced Osteoclastogenesis and Osteoclast Specific Genes (진교의 파골세포 분화 및 골 흡수 유전자 억제기전 연구)

  • Yang, Kyujin;Kim, Jae Hyun;Kim, Minsun;Ryu, Gwang-hyun;Moon, Jin-Ho;Lee, Hye-In;Jung, Hyuk-Sang;Sohn, Youngjoo
    • Korean Journal of Acupuncture
    • /
    • v.37 no.2
    • /
    • pp.63-75
    • /
    • 2020
  • Objectives : Osteoporosis is the most common bone disease and osteoporosis fracture is the leading cause of decreased life. Bisphosphonate and selective estrogen receptor modulators are the best choice of treatment for osteoporosis. However, when used for a long time, they increase the probability of side effect such as osteonecrosis of the jaw. Thus, it is crucial to develop alternative medicine to treat osteoporosis. Gentianae Macrophyllae Radix, a herbal medicine, is mainly to treat rheumatoid arthritis. However, the effect of the water extract of Gentianae Macrophyllae Radix (w-GM) on osteoporosis has not been investigated. Thus, we examine whether w-GM can inhibit osteoclast differentiation and bone resorption on receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL)-treated RAW 264.7 cells. In this study, RAW 264.7 cells were used as an osteoclast differentiation model by treating them with RANKL. Methods : RAW 264.7 cells were used to determine the effect of w-GM on osteoclast differentiation and bone resorption. The number of tartrate-resistant acid phosphatase (TRAP)-positive cells, TRAP activity and pit formation assay were examined. In addition, protein expressions were measured by western blot and mRNA expressions were analyzed by reverse transcription polymerase chain reaction. Results : Treatment with w-GM inhibited the number of TRAP-positive cells, TRAP activity and pit area. In addition, w-GM decreased protein expression such as mitogen-activated protein kinase, NF-κB, c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). It also inhibited the mRNA levels such as c-Fos, NFATc1, TRAP, NF-κB, calcitonin receptor and cathepsin K in RANKL-treated RAW 264.7 cells. Conclusions : These results suggest that w-GM has inhibitory effects via osteoclast differentiation, thus it could be a new medication for osteoporosis.

Human Periodontal Ligament Fibroblasts Support the Osteoclastogenesis of RAW264.7 Cells (치주인대섬유아세포가 파골세포분화에 미치는 영향)

  • Lee, Ho;Jeon, Yong-Seon;Choi, Seoung-Hwan;Kim, Hyung-Seop;Oh, Kwi-Ok
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.733-744
    • /
    • 2002
  • The fibroblasts are the principal cells in the periodontal ligament of peridontium. As the periodontal ligament fibroblasts (PDLF) show similar phenotype with osteoblasts, the PDLF are thought to play an important role in alveolar bone remodeling. Cell-to-cell contacted signaling is crucial for osteoclast formation. Recently it has been reported that PDLJ enhance the bone resorbing activity of osteoclasts differentiated from hematopoietic preosteoclasts. The aims of this study were to $clarify\;^{1)}$ the mechanism of PDLF-induced osteoclastogenesis $and\;^{2)}$ whether we can use preosteoclast cell line instead of primary hematopoietic preosteoclast cells for studying the mechanism of PDLF-induced osteoclastogenesis. Osteoclastic differentiation of mouse macrophage cell line RAW264.7 was compared with that of mouse bone marrow-derived M-CSF dependent cell (MDBM), a well-known hematopoietic preosteoclast model, by examining, 1) osteoclast-specific gene expression such as calcitonin receptor, M-CSF receptor (c-fms), cathepsin K, receptoractivator nuclear factor kappa B (RANK) ,2) generation of TRAP(+) multinucleated cells (MNCs), and 3) generation of resorption pit on the $OAAS^{TM}$ plate. RAW264.7 cultured in the medium containing of soluble osteoclast differentiation Factor (sODF) showed similar phenotype with MDBM-derived osteoclasts, those are mRNA expression pattern of osteoclast-specific genes, TRAP(+) MNCs generation, and bone resorbing abivity. Formation of resorption pits by osteoclastic MNCs differentiated from sODF-treated RAW264.7, was completely blocked by the addition of osteoprotegerin (OPG), a soluble decoy receptor for ODF, to the sODF-containing culture me야um. The effects of PDLF on differentiation of RAW264.7 into the TRAP(+) multinucleated osteoclast-like cells were examined using coculture system. PDLF were fxed with paraformaldehyde, followed by coculture with RAW264.7, which induced formation of TRAP(+) MNCs in the absence of additional treatment of sODF. When compared with untreated and fixed PDLF (fPDLF), IL-1 ${\beta}$-treated, or lipopolysaccha-ride-treated and then fixed PDLF showed two-folld increase in the supporting activity of osteoclastogenesis from RAW264.7 coculture system. There were no TRAP(+) MNCs formation in coculture system of RAW264.7 with PDLF of no fixation. These findigs suggested that we can replace the primary hematopoietic preosteoclasts for RAW264. 7 cell line for studying the mechanism of PDLF-induced osteoclastogenesis, and we hypothesize that PDLF control osteoclastogenesis through ODF expression which might be enhanced by inflammatory signals.