• 제목/요약/키워드: Bone matrix

Search Result 542, Processing Time 0.022 seconds

Clinical evaluation of the effects of free gingival and extracellular matrix grafts to increase the width of the keratinized tissue around dental implants (임플란트 주위 각화 조직 폭경의 증대를 위한 유리치은 이식술과 세포외 기질 이식술의 임상적 평가)

  • Jeong, Hwi-Seong;Kang, Jun-Ho;Chang, Yun-Young;Yun, Jeong-Ho
    • The Journal of the Korean dental association
    • /
    • v.55 no.1
    • /
    • pp.30-41
    • /
    • 2017
  • Inadequate keratinized mucosa around dental implants can lead to more plaque accumulation, tissue inflammation, marginal recession and attachment loss. We evaluated the effects of free gingival and extracellular matrix membrane grafts performed to increase the insufficient width of keratinized tissue around dental implants in the posterior mandible. A 47-year-old female patient presented with discomfort due to swelling of the lower right second premolar area. Due to severe destruction of alveolar bone, the tooth was extracted. After 3 months, a guided bone regeneration (GBR) procedure was performed and then a dental implant was placed 6 months later. During the second-stage implant surgery, free gingival grafting was performed to increase the width of the keratinized tissue. After 12 months, a clinical evaluation was performed. A 64-year-old female patient had a missing tooth area of bilateral lower molar region with narrow zone of keratinized gingiva and horizontal alveolar bone loss. Simultaneous implant placement and GBR were performed. Five months after the first-stage implant surgery, a gingival augmentation procedure was performed with an extracellular matrix membrane graft to improve the width of the keratinized tissue in the second-stage implant surgery. After 12 months, a clinical evaluation was performed. In these two clinical cases, 12 months of follow-up, revealed that the increased width of the keratinized tissue and the deepened oral vestibule was well maintained. A patient showed a good oral hygiene status. In conclusion, increased width of keratinized tissue around dental implants could improve oral hygiene and could have positive effects on the long-term stability and survival rate of dental implants. When planning a keratinized tissue augmentation procedure, clinicians should consider patient-reported outcomes.

  • PDF

Effects of Aralia cordata Thunb. on Proteoglycan Release, Type II Collagen Degradation and Matrix Metalloproteinase Activity in Rabbit Articular Cartilage Explants

  • Baek, Yong-Hyeon;Seo, Byung-Kwan;Lee, Jae-Dong;Huh, Jeong-Eun;Yang, Ha-Ru;Cho, Eun-Mi;Choi, Do-Young;Kim, Deog-Yoon;Cho, Yoon-Je;Kim, Kang-Il;Park, Dong-Suk
    • Journal of Acupuncture Research
    • /
    • v.22 no.2
    • /
    • pp.191-201
    • /
    • 2005
  • Background & Objective: Articular cartilage is a potential target for drugs designed to inhibit the activity of matrix metalloproteinases (MMPs) to stop or slow the destruction of the proteoglycan and collagen in the cartilage extracellular matrix. The purpose of this study was to investigate the effects of Aralia cordata Thunb. in inhibiting the release of glycosaminoglycan (GAG), the degradation of collagen, and MMP activity in rabbit articular cartilage explants. Methods : The cartilage-protective effects of Aralia cordata Thunb. were evaluated by using glycosaminoglycan degradation assay, collagen degradation assay, colorimetric analysis of MMP activity, measurement of lactate dehydrogenase activity and histological analysis in rabbit cartilage explants culture. Results : Interleukin-la (IL-1a) rapidly induced GAG, but collagen was much less readily released from cartilage explants. Aralia cordata Thunb. significantly inhibited GAG and collagen release in a concentration-dependent manner. Aralia cordata Thunb. dose-dependently inhibited MMP-3 and MMP-13 expression and activities from IL-1a-treated cartilage explants cultures when tested at concentrations ranging from 0.02 to 0.2 mg/ml. Aralia cordata Thunb. had no harmful effect on chondrocytes viability or cartilage morphology in cartilage explants. Histological analysis indicated that Aralia cordata Thunb. reduced the degradation of the cartilage matrix compared with that of IL -1a-treated cartilage explants.

  • PDF

Dairy Dietary Calcium and Osteoporosis - An Overview

  • Jayaprakasha, H.M.;Yoon, Y.C.
    • Journal of Dairy Science and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.143-150
    • /
    • 2004
  • The osteoporosis is a disease characterized by lower bone mineral content, deterioration of bone tissue and a reduction in the protein and mineral matrix of the bone. The bone becomes more porous leading to increased bone fragility and risk of fracture, particularly of the hip, spine and wrist. Osteoporosis can result in disfigurement, lowered self·esteem, reduction or loss of mobility, and decreased independence. Adequate calcium intake through milk and milk products in childhood and adolescence is a decisive marker for obtaining a maximum bone mass (peak adult bone mass) and f3r the prevention of osteoporosis. Calcium is one of the most critical nutrients associated with the osteoporosis. Dietary calcium is of great significance for healthy skeletal growth and development. The bone mineral content and bone mineral density of young adults is directly related to the calcium intake through milk and dairy products. Milk and milk products are the important sources of calcium as the richness and bioavailability of this nutrient is very high as compared to other food products. If enough calcium is not supplemented through diet, calcium from the bone will be depleted to maintain the blood plasma calcium level. The article focuses on the various issues related to osteoporosis manifestation and the role of dietary calcium especially calcium derived from dairy products.

  • PDF

Design and stress analysis of femur bone implant with composite plates

  • Ramakrishna, S.;Pavani, B.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.5 no.1
    • /
    • pp.37-50
    • /
    • 2020
  • Development of lightweight implant plates are important to reduce the stress shielding effect for a prosthesis of femur bone fractures. Stainless steel (SS-316L) is a widely used material for making implants. Stress shielding effect and other issues arise due to the difference in mechanical properties of stainless steel when compared with bone. To overcome these issues, composite materials seem to be a better alternative solution. The comparison is made between two biocompatible composite materials, namely Ti-hydroxyapatite and Ti-polypropylene. "Titanium (Ti)" is fiber material while "hydroxyapatite" and "polypropylene" are matrix materials. These two composites have Young's modulus closer to the bone than stainless steel. Besides the variety of bones, present paper constrained to femur bone analysis only. Being heaviest and longest, the femur is the most likely to fail among all bone failures in human. Modelling of the femur bone, screws, implant and assembly was carried out using CATIA and static analysis was carried out using ANSYS. The femur bone assembly was analyzed for forces during daily activities. Ti-hydroxyapatite and Ti-polypropylene composite implants induced more stress in composite implant plate, results less stress induced in bone leading to a reduction in shielding effect than stainless steel implant plate thus ensuring safety and quick healing for the patient.

ISOLATION OF HUMAN ALVEOLAR BONE-DERIVED CELLS AND IN VITRO AMPLIFICATION FOR TISSUE ENGINEERING (조직공학용 사람 치조골세포의 인공증식)

  • Choi, Byung-Ho;Park, Jin-Hyoung;Huh, Jin-Young;Yoo, Jae-Ha
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.5
    • /
    • pp.453-456
    • /
    • 2001
  • Background: Autogenous alveolar bone cell transplantation may be suitable for tissue engineering for alveolar bone reconstruction. This study aimed to isolate human alveolar bone-derived cells (HABDCs) and to evaluate the ability of collagen gels to support HABDC proliferation and differentiation for human alveolar bone tissue engineering applications. Method: Cultures of primary HABDCs were established from alveolar bone chips obtained from 10 persons undergoing tooth extraction. These cells were expanded in vitro until passage 3 and used for the in vitro characterization of HABDCs and the in vitro analysis of collagen gels for alveolar bone tissue engineering. Results: Of the 10 attempts made to obtain HABDC cultures, eight were successful. HABDCs expressed the osteoblastic phenotype characterized by alkaline phosphatase activity, osteocalcin expression and the mineralization of the extracellular matrix in vitro. When seeded on collagen gels, HABDCs penetrated into the collagen gel matrices and proliferated inside the gels. Significantly, when HABDCs were embedded into the gels, collagen fibers and mineralization were produced within the gels. Conclusion: This study demonstrates the feasibility of using cultured HABDCs and collagen gels for human alveolar bone tissue engineering applications.

  • PDF

Chondroblastoma of the Talus Mimicking an Aneurysmal Bone Cyst: A Case Report (동맥류성 골낭종으로 오인된 거골에 발생한 연골모세포종: 증례 보고)

  • Park, Ji Soo;Suh, Jin Soo;Choi, Jun Young
    • Journal of Korean Foot and Ankle Society
    • /
    • v.23 no.1
    • /
    • pp.31-34
    • /
    • 2019
  • Chondroblastoma is a rare benign tumor that produces giant cells and cartilage matrix. The tumor occurs in people between 10 and 25 years with slightly higher incidence in males. The condition occurs in the proximal epiphysis of the tibia and humerus, distal epiphysis of the femur, but its occurrence in the talus is relatively rare, accounting for 4% of the total number of chondroblastoma cases. Chondroblastoma is often misdiagnosed as a primary aneurysmal bone cyst, giant cell tumor, chondromyxoid, and lesion of a secondary aneurysmal bone cyst by fibrous dysplasia. The most commonly used surgical method for chondroblastoma is broad curettage with bone grafting. In general, an aneurysmal bone cyst is associated with a second degree chondroblastoma, which is approximately 20%. Chondroblastoma of the talus and secondary aneurysmal bone cysts can be misdiagnosed as primary aneurysmal bone cysts. This paper reports a case of a young male patient with chondroblastoma of the talus, which was initially misdiagnosed as an aneurysmal bone cyst with involvement of the talo-navicular joint.

BONES HAVE EARS

  • Stephen C. Cowin
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1055-1058
    • /
    • 2002
  • The movement of bone fluid from the region of the bone vasculature through the canaliculi and the lacunae of the surrounding mineralized tissue accomplishes three important tasks. First it transports nutrients to the osteocytes in the lacunae buried in the mineralized matrix. Second, it carries away the cell waste. Third, the bone fluid exerts a force on the cell process, a force that is large enough for the cell to sense. This is probably the basic mechanotrasduction mechanism in bone, the way in which bone senses the mechanical load to which it is subjected. The mechanism of bone fluid flow are described below with particular emphasis on mechanotransduction. Also described is the cell to cell communication by which higher frequency signals might be transferred, a potential mechanism in bone by which the small whole tissue strain is amplified so the bone cells can respond to it. One of the conclusions is that higher frequency low amplitude strains can maintain bone as effectively as low frequency low amplitude strains can maintain bone as effectively as low frequency high amplitude strains. This mechanism has many similarities with the mechanotransduction of acoustical signals in the ear. These conclusion leads to a paradigm shift in how to treat osteoporosis and how to cope with microgravity.

  • PDF

A Medium-Chain Fatty Acid, Capric Acid, Inhibits RANKL-Induced Osteoclast Differentiation via the Suppression of NF-κB Signaling and Blocks Cytoskeletal Organization and Survival in Mature Osteoclasts

  • Kim, Hyun-Ju;Yoon, Hye-Jin;Kim, Shin-Yoon;Yoon, Young-Ran
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.598-604
    • /
    • 2014
  • Fatty acids, important components of a normal diet, have been reported to play a role in bone metabolism. Osteoclasts are bone-resorbing cells that are responsible for many bone-destructive diseases such as osteoporosis. In this study, we investigated the impact of a medium-chain fatty acid, capric acid, on the osteoclast differentiation, function, and survival induced by receptor activator of NF-${\kappa}B$ ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Capric acid inhibited RANKL-mediated osteoclastogenesis in bone marrow-derived macrophages and suppressed RANKL-induced $I{\kappa}B{\alpha}$ phosphorylation, p65 nuclear translocation, and NF-${\kappa}B$ transcriptional activity. Capric acid further blocked the RANKL-stimulated activation of ERK without affecting JNK or p38. The induction of NFATc1 in response to RANKL was also attenuated by capric acid. In addition, capric acid abrogated M-CSF and RANKL-mediated cytoskeleton reorganization, which is crucial for the efficient bone resorption of osteoclasts. Capric acid also increased apoptosis in mature osteoclasts through the induction of Bim expression and the suppression of ERK activation by M-CSF. Together, our results reveal that capric acid has inhibitory effects on osteoclast development. We therefore suggest that capric acid may have potential therapeutic implications for the treatment of bone resorption-associated disorders.

Combined effect of recombinant human bone morphogenetic protein-2 and low level laser irradiation on bisphosphonate-treated osteoblasts

  • Jeong, Seok-Young;Hong, Ji-Un;Song, Jae Min;Kim, In Ryoung;Park, Bong Soo;Kim, Chul Hoon;Shin, Sang Hun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.44 no.6
    • /
    • pp.259-268
    • /
    • 2018
  • Objectives: The purpose of this study was to evaluate the synergic effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) and low-level laser therapy (LLLT) on bisphosphonate-treated osteoblasts. Materials and Methods: Human fetal osteoblast cells (hFOB 1.19) were cultured with $100{\mu}M$ alendronate. Low-level Ga-Al-As laser alone or with 100 ng/mL rhBMP-2 was then applied. Cell viability was measured with MTT assay. The expression levels of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoprotegerin (OPG) were analyzed for osteoblastic activity inducing osteoclastic activity. Collagen type and transforming growth factor beta-1 were also evaluated for bone matrix formation. Results: The results showed that rhBMP-2 and LLLT had a synergic effect on alendronate-treated osteoblasts for enhancing osteoblastic activity and bone matrix formation. Between rhBMP-2 and LLLT, rhBMP-2 exhibited a greater effect, but did not show a significant difference. Conclusion: rhBMP-2 and LLLT have synergic effects on bisphosphonate-treated osteoblasts through enhancement of osteoblastic activity and bone formation activity.

THE EFFECT OF HYALURONIC ACID ON EXPRESSION OF EXTRACELLULAR MATRIX PROTEINS AND BONE FORMATION IN RABBIT MANDIBULAR DISTRACTION OSTEOGENESIS (가토 하악골체부 신연 골형성술시 하이알우론산이 세포외 기질 단백질의 발현과 골형성에 미치는 영향)

  • Park, Ki-Nam;Song, Hyun-Chul;Jee, Yu-Jin;Yoo, Jin-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.2
    • /
    • pp.116-129
    • /
    • 2005
  • Distraction osteogenesis is a new bone formation technique. There is a advantage of the environmental adaptation when distraction force is applied to the gap between osteotomy lines. But it has a disadvantage of long-term wearing of the appliance and long consolidation period. Therefore we make an effort to reduce it and repair normal function. Extracellular matrix proteins have a function to control the cellular growth, migration, shape and metabolism. In these, hyaluronic acid is a member of polysaccharide glycosaminoglycans (GAGs) and has a important function as bone formation and osteoinduction property. Purpose : In this experimental study in rabbit mandibular distraction osteogenesis, we investigated the bone enhancing property of hyaluronic acid and the expression of extracellular proteins such as osteocalcin and osteonectin. Materials and Methods : The experimental study was carried out on 24 Korean male white rabbits (both mandibular body, n=48). Distraction group was divided to distraction experimental (A, n=16) and distraction control (B, n=16) by the application of hyaluronic acid (Hyruan, LGCI, Seoul, Korea). Normal control group (C, n=16) was only osteotomized. After 5 days latency, distraction devices were activated at a rate of 1.4 mm per day (0.7 mm every 12hours) for 3.5 days. Animals were sacrificed at postoperative 3, 7, 14, and 28 days. H&E stain and immunohistochemical stain was done on decalcified section. Additionally RT-PCR analysis was done for the identification of the expression of osteocalcin and osteonectin. Results : The bone formation in distraction experimental group was much more than that in distraction and normal control group at postoperative 28 days. In immunohistochemical stain, osteocalcin was enhanced at only postoperative 14 days, but osteonectin was not different at each post-operation days. In RT-PCR analysis, osteocalcin was not different at each post-operation days, but osteonectin was strongly expressed in distraction experimental group at postoperative 7 days. The expression of osteocalcin and osteonectin was elevated during the healing period. Conclusion : We found the good bone formation ability of hyaluronic acid in distraction osteogenesis through the immunohistochemistry and RTPCR analysis to osteocalcin and osteonectin, known as a bone formation marker. The application of hyaluronic acid in distraction osteogenesis is a method to reduce the consolidation period.