• 제목/요약/키워드: Bone charcoal

검색결과 4건 처리시간 0.017초

Bone Charcoal에 의한 폐수증의 중금속 흡착특성 (Adsorption Characteristics of Heavy Metals in Wastewater on Bone Charcoal)

  • 정팔진;곽동희;이재욱
    • 한국물환경학회지
    • /
    • 제16권4호
    • /
    • pp.555-563
    • /
    • 2000
  • The study was conducted to evaluate the adsorption equilibrium of heavy metals on bone charcoal made of livestock bone which was sintered at $550{\sim}600^{\circ}C$. Analysis of bone charcoal by XRD and FT-IR showed that crystal structure was similar to that of synthetic hydroxyapatite. Adsorption equilibrium capacity of single component (Pb, Cd, and Zn) on bone charcoal could be expressed as Langmuir, Freundlich, and Sips equations. Sips isotherm was best among the three isotherms. The values predicted by IAST(ideal adsorbed solution theory) showed good relationship to the experimental data in multicomponent adsorption equilibrium. Adsorption affinity was in order of Pb, Cd, and Zn. The order was same in case of activated carbon or synthetic hydroxyapatite. Through the study results. it would be expected that bone charcoal made of livestock could be used in field of wastewater treatment plants as adsorbent to remove heavy metal.

  • PDF

OSL 연대측정법의 고고학적 적용 (Applications of OSL method in Archeology)

  • 양동윤;김주용;신숙정
    • 한국제4기학회지
    • /
    • 제20권1호
    • /
    • pp.28-38
    • /
    • 2006
  • 1896년 Becquerel에 의해 우라늄의 방사능이 발견된 후, 방사붕괴 원리를 이용한 수많은 연대측정법이 개발되었고, 분석기기도 정밀화되면서 그 정확도도 날로 높아지고 있다. 방사성동위원소 연대측정법 중에서 ${14}^C$ 측정분야는 고고학에 있어서 최적의 연대측정법으로서 고고학 발전에 많은 도움이 되어왔다. 그러나 ${14}^C$ 측정법에 이용되는 유기물을 포함하는 시료가 문화층에 존재하지 않는 경우도 있어 다른 연대측정법이 필요하 다. 이러한 문제의 해결을 위해 현재 OSL연대측정법 (Optically Stimulated Luminescence dating method) 이 고고학 분야에서 자주 응용되고 있다. 본 연구 목적은 OSL의 고고학적 적용을 위한 시료채취와 적용상 문제점 등에 대해 검토하는데 있다.

  • PDF

하우스 엽채류를 위한 관비재배용 유기액비 개발 (Development of Organic liquid Fertilizer for leaf Vegetable under Greenhouse)

  • 주선종;손상목;김진한
    • 한국유기농업학회지
    • /
    • 제9권2호
    • /
    • pp.83-99
    • /
    • 2001
  • 농산부산물을 이용한 엽채류 전용 유기액비를 개발하기 위하여 액비자재와 물을 1:4로 혼합 하여 45일간 혐기발효 후 시험한 결과는 다음과 같다. 1. 액비원료중 어분과 골분은 질소, 인산 및 칼리등 양분함량이 현저히 많았다. 추출액비의 무기태 질소는 골분과 어분이 많고 인산, 칼리, 석회 및 고토성분은 계분, 대두박 및 쌀겨에서 많았다. 2. 유기액비의 부숙 안정화 과정중 암모니아가스는 2ppm이하로 발생되었으며 탈취제 처리로 안정화된 액비내 세균수는 급격히 감소하였다. 유기액비의 속성 부숙 안정화를 위한 부숙촉진제인 설탕과 미생물제 처리간 온도는 차이가 없었으나 황화수소 발생량은 농산부산액비 1,761ppm에 비하여 농산부산액비+설탕+미생물제 처리는 914ppm으로 48%감소하였다. EC는 농산부산 유기액비에 설탕 첨가로 현저히 높았고, 제조후 35일 경과부터 감소하는 경향이었다. 3. 결구상추 및 배추의 생체 수량은 계분50+골분30+쌀겨20%조합에서 가장 높았다. 배추의 수량은 관행농법 10,875kg/10a에 비하여 농산부산 유기액비는 13,656kg/10a로 26% 증수하였으며 가식부의 질산염 함량은 관행농법 2,426ppm에 비하여 농산부산 유기액비는 2, 150ppm으로 11.4%감소하였다.

  • PDF

한강하류지형면의 분류와 지형발달에 대한 연구 (양수리에서 능곡까지)

  • 박노식
    • 동굴
    • /
    • 제68호
    • /
    • pp.23-73
    • /
    • 2005
  • Purpose of study; The purpose of this study is specifically classified as two parts. The one is to attempt the chronological annals of Quaternary topographic surface through the study over the formation process of alluvial surfaces in our country, setting forth the alluvial surfaces lower-parts of Han River area, as the basic deposit, and comparing it to the marginal landform surfaces. The other is to attempt the classification of micro morphology based on the and condition premising the land use as a link for the regional development in the lower-parts of Han river area. Reasons why selected the Lower-parts of Han river area as study objects: 1. The change of river course in this area is very serve both in vertical and horizontal sides. With a situation it is very easy to know about the old geography related to the formation process of topography. 2. The component materials of gravel, sand, silt and clay are deposited in this area. Making it the available data, it is possible to consider about not oかy the formation process of topography but alsoon the development history to some extent. 3. The earthen vessel, a fossil shell fish, bone, cnarcoal and sea-weed are included in the alluvial deposition in this area. These can be also valuable data related to the chronological annals. 4. The bottom set conglometate beds is also included in the alluvial deposits. This can be also valuable data related to the research of geomorphological development. 5. Around of this area the medium landform surface, lower landform surface, pediment and basin, are existed, and these enable the comparison between the erosion surfaces and the alluvial surfaces. Approach : 1. Referring to the change of river beds, I have calculated the vertical and horizontal differences comparing the topographic map published in 1916 with that published in 1966 and through the field work 2. In classifying the landform, I have applied the method of micro morphological classification in accordance with the synthetic index based upon the land conditions, and furthermore used the classification method comparing the topographic map published in 1916 and in that of 1966. 3. I have accorded this classification with the classification by mapping through appliying the method of classification in the development history for the field work making the component materials as the available data. 4. I have used the component materials, which were picked up form the outcrop of 10 places and bored at 5 places, as the available data. 5. I have referred to Hydrological survey data of the ministry of Construction (since 1916) on the overflow of Han-river, and used geologic map of Seoul metropolitan area. Survey Data, and general map published in 1916 by the Japanese Army Survbey Dept., and map published in 1966 by the Construction Research Laboratory and ROK Army Survey Dept., respectively. Conclusion: 1. Classification of Morphology: I have added the historical consideration for development, making the component materials and fossil as the data, to the typical consideration in accordance with the map of summit level, reliefe and slope distribution. In connection with the erosion surface, I have divided into three classification such as high, medium and low-,level landform surfaces which were classified as high and low level landform surfaces in past. furthermore I have divided the low level landform surface two parts, namely upper-parts(200-300m) and bellow-parts(${\pm}100m$). Accordingly, we can recognize the three-parts of erosion surface including the medium level landform surface (500-600m) in this area. (see table 22). In condition with the alluvial surfaces I have classified as two landform surfaces (old and new) which was regarded as one face in past. Meamwhile, under the premise of land use, the synthetic, micro morphological classification based upon the land condition is as per the draw No. 19-1. This is the quite new method of classification which was at first attempted in this country. 2. I have learned that the change of river was most severe at seeing the river meandering rate from Dangjung-ni to Nanjido. As you seee the table and the vertical and horizontal change of river beds is justly proportionable to the river meandering rate. 3. It can be learned at seeing the analysis of component materials of alluvial deposits that the component from each other by areas, however, in the deposits relationship upper stream, and between upper parts and below parts I couldn't always find out the regular ones. 4. Having earthern vessel, shell bone, fossil charcoal and and seaweeds includen in the component materials such as gravel, clay, sand and silt in Dukso and Songpa deposits area. I have become to attempt the compilation of chronicle as yon see in the table 22. 5. In according to hearing of basemen excavation, the bottom set conglomerate beds of Dukso beds of Dukso-beds is 7m and Songpa-beds is 10m. In according to information of dredger it is approx. 20m in the down stream. 6. Making these two beds as the standard beds, I have compared it to other beds. 7 The coarse sand beds which is covering the clay-beds of Dukso-beds and Nanjidobeds is shown the existence of so-called erosion period which formed the gap among the alluvial deposits of stratum. The former has been proved by the sorting, bedding and roundness which was supplied by the main stream and later by the branch stream, respectively. 8. If the clay-beds of Dukeo-bed and Songpa-bed is called as being transgressive overlap, by the Eustatic movement after glacial age, the bottom set conglomerate beds shall be called as being regressive overlap at the holocene. This has the closest relationship with the basin formation movement of Seoul besides the Eustatic movement. 9. The silt-beds which is the main component of deposits of flood plain, is regarded as being deposited at the Holocene in the comb ceramic and plain pottery ages. This has the closest relationship with the change of river course and river beds.