• Title/Summary/Keyword: Bone Morphology

Search Result 262, Processing Time 0.023 seconds

CEPHALOMETRIC AND NASOPHARYNGEAL ENDOSCOPIC STUDY IN PATIENTS WITH OBSTRUCTIVE SLEEP APNEA (폐쇄성 수면 무호흡증 환자에 있어서 두부방사선 계측 분석 및 인후 내시경적 연구)

  • Choi, Jin-Young;Engelke, W.
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.21 no.2
    • /
    • pp.149-165
    • /
    • 1999
  • The pathomechanism of obstructive sleep apnea(OSA) is not clearly elucidated. The possible mechanisms are pathologic reduction of pharyngeal muscular tonus during sleep, abnormal anatomical stenosis of nasopharyx or a combination of the above two mechanisms. It is very important to find the cause(anatomical location or pathologic dynamic change) of OSA in order to treat it. Cephalometric analysis in patients with obstructive sleep apnea is a good method for evaluating anatomical morphologic change but it cannot give any information about the dynamic changes occurring during sleep. On the contrary, nasopharyngeal endoscopy offer 3 dimensional image and information about the dynamic changes. Accordingly, these two diagnostic tools can be utilize in the diagnosis and treatment planning of OSA Cephalometric analysis of craniofacial skeletal and soft tissue morphology in 53 patients with OSA and 43 controls was performed and cephalometric analysis and nasopharygeal endoscopy were performed in 9 patients with OSA in order to come up with individualized therapy plans. Following results were obtained ; Patients with OSA showed 1. body weight gain 2. clockwise mandibular rotation 3. increased anterior lower facial height 4. inferiorly positioned hyoid bone 5. increased length of soft palate 6. decreased sagittal dimension of nasopharyx 7. increased vertical length of inferior collapsable nasopharyx 8. increased length of tongue Through cephalometric analysis and nasopharygeal endoscopy(mutually cooperative in diagnosis), 9. one can find the possible origin of OSA and make a adequate individualized therapy plan and predict accurate prognosis. Cephalometric analysis and nasopharygeal endoscopy are highly recommended as a diagnostic aid in OSA patients

  • PDF

Cell response to a newly developed Ti-10Ta-10Nb alloy and its sputtered nanoscale coating

  • Kim, Young-Min;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.56-61
    • /
    • 2009
  • STATEMENT OF PROBLEM. The success of titanium implants is due to osseointegration or the direct contact of the implant surface and bone without a fibrous connective tissue interface. PURPOSE. The purpose of this study was to evaluate the osteoblast precursor response to titanium-10 tantalum-10 niobium(Ti-Ta-Nb) alloy and its sputtered coating. MATERIAL AND METHODS. Ti-Ta-Nb coatings were sputtered onto the Ti-Ta-Nb disks. Ti6-Al-4V alloy disks were used as controls. An osteoblast precursor cell line, were used to evaluate the cell responses to the 3 groups. Cell attachment was measured using coulter counter and the cell morphology during attachment period was observed using fluorescent microscopy. Cell culture was performed at 4, 8, 12 and 16 days. RESULTS. The sputtered Ti-Ta-Nb coatings consisted of dense nanoscale grains in the range of 30 to 100 nm with alpha-Ti crystal structure. The Ti-Ta-Nb disks and its sputtered nanoscale coatings exhibited greater hydrophilicity and rougher surfaces compared to the Ti-6Al-4V disks. The sputtered nanoscale Ti-Ta-Nb coatings exhibited significantly greater cell attachment compared to Ti-6Al-4V and Ti-Ta-Nb disks. Nanoscale Ti-Ta-Nb coatings exhibited significantly greater ALP specific activity and total protein production compared to the other 2 groups CONCLUSIONS. It was concluded that nanoscale Ti-Ta-Nb coatings enhance cell adhesion. In addition, Ti-Ta-Nb alloy and its nanoscale coatings enhanced osteoblast differentiation, but did not support osteoblast precursor proliferation compared to Ti-6Al-4V. These results indicate that the new developed Ti-Ta-Nb alloy and its nanoscale Ti-Ta-Nb coatings may be useful as an implant material.

Modified toe pulp fillet flap coverage: Better wound healing and satisfactory length preservation

  • Baek, Sang Oon;Suh, Hyo Wan;Lee, Jun Yong
    • Archives of Plastic Surgery
    • /
    • v.45 no.1
    • /
    • pp.62-68
    • /
    • 2018
  • Background Amputation is commonly performed for toe necrosis secondary to peripheral vascular diseases, such as diabetes mellitus. When amputating a necrotic toe, preservation of the bony structure is important for preventing the collapse of adjacent digits into the amputated space. However, in the popular terminal Syme's amputation technique, partial amputation of the distal phalanx could cause increased tension on the wound margin. Herein, we introduce a new way to resect sufficient bony structure while maintaining the normal length, based on a morphological analysis of the toes. Methods Unlike the pulp of the finger in the distal phalanx, the toe has abundant teardrop-shaped pulp tissue. The ratio of the vertical length to the longitudinal length in the distal phalanx was compared between the toes and fingers. Amputation was performed at the proximal interphalangeal joint level. Then, a mobilizable pulp flap was rotated $90^{\circ}$ cephalad to replace the distal soft tissue defect. This modified toe fillet flap was performed in 5 patients. Results The toe pulp was found to have a vertically oriented morphology compared to that of the fingers, enabling length preservation through cephalad rotation. All defects were successfully covered without marginal ischemia. Conclusions While conventional toe fillet flap coverage focuses on the principle of length preservation as the first priority, our modified method takes both wound healing and length into account. The fattiest part of the pulp is advanced to the toe tip, providing a cushioning effect and enough length to substitute for phalangeal bone loss. Our modified method led to satisfactory functional and aesthetic outcomes.

Load response of the natural tooth and dental implant: A comparative biomechanics study

  • Robinson, Dale;Aguilar, Luis;Gatti, Andrea;Abduo, Jaafar;Lee, Peter Vee Sin;Ackland, David
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.3
    • /
    • pp.169-178
    • /
    • 2019
  • PURPOSE. While dental implants have displayed high success rates, poor mechanical fixation is a common complication, and their biomechanical response to occlusal loading remains poorly understood. This study aimed to develop and validate a computational model of a natural first premolar and a dental implant with matching crown morphology, and quantify their mechanical response to loading at the occlusal surface. MATERIALS AND METHODS. A finite-element model of the stomatognathic system comprising the mandible, first premolar and periodontal ligament (PDL) was developed based on a natural human tooth, and a model of a dental implant of identical occlusal geometry was also created. Occlusal loading was simulated using point forces applied at seven landmarks on each crown. Model predictions were validated using strain gauge measurements acquired during loading of matched physical models of the tooth and implant assemblies. RESULTS. For the natural tooth, the maximum vonMises stress (6.4 MPa) and maximal principal strains at the mandible ($1.8m{\varepsilon}$, $-1.7m{\varepsilon}$) were lower than those observed at the prosthetic tooth (12.5 MPa, $3.2m{\varepsilon}$, and $-4.4m{\varepsilon}$, respectively). As occlusal load was applied more bucally relative to the tooth central axis, stress and strain magnitudes increased. CONCLUSION. Occlusal loading of the natural tooth results in lower stress-strain magnitudes in the underlying alveolar bone than those associated with a dental implant of matched occlusal anatomy. The PDL may function to mitigate axial and bending stress intensities resulting from off-centered occlusal loads. The findings may be useful in dental implant design, restoration material selection, and surgical planning.

Radially patterned polycaprolactone nanofibers as an active wound dressing agent

  • Shin, Dongwoo;Kim, Min Sup;Yang, Chae Eun;Lee, Won Jai;Roh, Tai Suk;Baek, Wooyeol
    • Archives of Plastic Surgery
    • /
    • v.46 no.5
    • /
    • pp.399-404
    • /
    • 2019
  • Background The objectives of this study were to design polycaprolactone nanofibers with a radial pattern using a modified electrospinning method and to evaluate the effect of radial nanofiber deposition on mechanical and biological properties compared to non-patterned samples. Methods Radially patterned polycaprolactone nanofibers were prepared with a modified electrospinning method and compared with randomly deposited nanofibers. The surface morphology of samples was observed under scanning electron microscopy (SEM). The tensile properties of nanofibrous mats were measured using a tabletop uniaxial testing machine. Fluorescence-stained human bone marrow stem cells were placed along the perimeter of the radially patterned and randomly deposited. Their migration toward the center was observed on days 1, 4, and 7, and quantitatively measured using ImageJ software. Results Overall, there were no statistically significant differences in mechanical properties between the two types of polycaprolactone nanofibrous mats. SEM images of the obtained samples suggested that the directionality of the nanofibers was toward the central area, regardless of where the nanofibers were located throughout the entire sample. Florescence images showed stronger fluorescence inside the circle in radially aligned nanofibers, with significant differences on days 4 and 7, indicating that migration was quicker along radially aligned nanofibers than along randomly deposited nanofibers. Conclusions In this study, we successfully used modified electrospinning to fabricate radially aligned nanofibers with similar mechanical properties to those of conventional randomly aligned nanofibers. In addition, we observed faster migration along radially aligned nanofibers than along randomly deposited nanofibers. Collectively, the radially aligned nanofibers may have the potential for tissue regeneration in combination with stem cells.

Assessment of the dimensions of the pterygoid hamulus for establishing age- and sex-specific reference standards using cone-beam computed tomography

  • Mehra, Archana;Karjodkar, Freny R.;Sansare, Kaustubh;Kapoor, Ruchika;Tambawala, Shahnaz;Saxena, Vasu Siddhartha
    • Imaging Science in Dentistry
    • /
    • v.51 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • Purpose: This study was conducted to establish age- and sex-specific reference standards for pterygoid hamulus(PH) dimensions using cone-beam computed tomography (CBCT). Materials and Methods: CBCT scans of 1,000 patients(493 males and 507 females) were retrospectively assessed in coronal sections for length and width measurements of the PH by 3 investigators. The study data were divided into 3 age groups(group 1: <20 years, group 2: 20-50 years, group 3: >50 years). Length and width were compared using one-way analysis of variance and the t-test for age and sex, respectively. Results: The length of the PH on the right side significantly increased from group 1 (6.11±1.47mm), through group 2 (6.65±1.67 mm) to group 3 (6.99±1.79 mm) and on the left side from group 2 (6.58±1.63) to group 3 (6.98±1.70). The width of the PH significantly decreased from group 1 (1.81±0.39 mm) to group 2 (1.61±0.39 mm) on the right side, and similarly from 1.87±0.36mm to 1.67±0.37mm on the left side. PH length (7.18±1.81mm on the right side and 7.10±1.72 mm on the left side) and width (1.68±0.38 mm on the right side and 1.74±0.36 mm on the left side) were significantly greater in males than in females. Conclusion: The length of the PH increased with age, whereas width first decreased and then increased. Length and width measurements were significantly higher in males than in females. These findings will aid in the diagnosis of untraceable pain in the oropharyngeal region related to altered PH morphology.

Rodent peri-implantitis models: a systematic review and meta-analysis of morphological changes

  • Ren Jie Jacob Chew;Jacinta Xiaotong Lu;Yu Fan Sim;Alvin Boon Keng Yeo
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.6
    • /
    • pp.479-495
    • /
    • 2022
  • Purpose: Rodent models have emerged as an alternative to established larger animal models for peri-implantitis research. However, the construct validity of rodent models is controversial due to a lack of consensus regarding their histological, morphological, and biochemical characteristics. This systematic review sought to validate rodent models by characterizing their morphological changes, particularly marginal bone loss (MBL), a hallmark of peri-implantitis. Methods: This review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A literature search was performed electronically using MEDLINE (PubMed), and Embase, identifying pre-clinical studies reporting MBL after experimental peri-implantitis induction in rodents. Each study's risk of bias was assessed using the Systematic Review Center for Laboratory animal Experimentation (SYRCLE) risk of bias tool. A meta-analysis was performed for the difference in MBL, comparing healthy implants to those with experimental peri-implantitis. Results: Of the 1,014 unique records retrieved, 23 studies that met the eligibility criteria were included. Peri-implantitis was induced using 4 methods: ligatures, lipopolysaccharide, microbial infection, and titanium particles. Studies presented high to unclear risks of bias. During the osseointegration phase, 11.6% and 6.4%-11.3% of implants inserted in mice and rats, respectively, had failed to osseointegrate. Twelve studies were included in the meta-analysis of the linear MBL measured using micro-computed tomography. Following experimental peri-implantitis, the MBL was estimated to be 0.25 mm (95% confidence interval [CI], 0.14-0.36 mm) in mice and 0.26 mm (95% CI, 0.19-0.34 mm) in rats. The resulting peri-implant MBL was circumferential, consisting of supra- and infrabony components. Conclusions: Experimental peri-implantitis in rodent models results in circumferential MBL, with morphology consistent with the clinical presentation of peri-implantitis. While rodent models are promising, there is still a need to further characterize their healing potentials, standardize experiment protocols, and improve the reporting of results and methodology.

Study of frontal and ethmoid sinus of sinonasal complex along with olfactory fossa: anatomical considerations for endoscopic sinus surgery

  • Kusum R Gandhi;Sumit Tulshidas Patil;Brijesh Kumar;Manmohan Patel;Prashant Chaware
    • Anatomy and Cell Biology
    • /
    • v.56 no.2
    • /
    • pp.179-184
    • /
    • 2023
  • The Functional endoscopic sinus surgery through transnasal approach is a common modality of treatment for disorders of the nasal cavity, paranasal air sinuses as well as cranial cavity. The olfactory fossa (OF) is located along the superior aspect of cribriform plate which varies in shape and depth. This variable measurement of the depth of OF is mostly responsible for greater risk of intracranial infiltration during endoscopic procedures in and around the nasal cavity. The morphology of frontal and ethmoid sinus (ES) vary from simple to complex. This cadaveric study is planned to improve the ability of the otolaryngologist, radiologist to understand the possible morphological variations and plan steps of less invasive "precision surgery" to have a safe and complication free procedures. A total of 37 human head regions were included in the study. For classification of OF, Modified Kero's classification was used. The size, shape and cells of frontal and ES were noted. We found, type II (60.8%) OF was more common followed by type I (29.7%) than type III (9.5%). The shape of frontal sinus was comma shaped (55.4%) followed by oval (18.9%) than irregular (16.2%). Most common two cells type of ES was seen in 50.0% of both anterior and posterior ES. Out of 74 ES, 8.1% of Onodi cells and 14.9% of agger nasi cells were seen.

Exosomes from Tension Force-Applied Periodontal Ligament Cells Promote Mesenchymal Stem Cell Recruitment by Altering microRNA Profiles

  • Maolin Chang;Qianrou Chen;Beike Wang;Zhen Zhang;Guangli Han
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.202-214
    • /
    • 2023
  • Background and Objectives: To investigate the role of exosomes from periodontal ligament cells (PDLCs) in bone marrow mesenchymal stem cell (BMSC) migration. Methods and Results: Human PDLCs were applied cyclic tension stretching. Exosomes were extracted from cultured PDLCs by ultracentrifugation, then characterized for their size, morphology and protein markers by NTA, TEM and western blotting. The process that PKH26-labeled exosomes taken up by BMSCs was assessed by confocal microscope. BMSC migration was examined by Transwell assay. Exosomes derived from PDLCs were identified. Cyclic tension stretch application on PDLCs can enhance the migration ability of BMSCs through exosomes. The exosomal miRNA expression profiles of unstretched and stretched PDLCs were tested by miRNA microarray. Four miRNAs (miR-4633-5p, miR-30c-5p, miR-371a-3p and let-7b-3p) were upregulated and six (miR-4689, miR-8485, miR-4655-3p, miR-4672, miR-3180-5p and miR-4476) were downregulated in the exosomes after stretching. Sixteen hub proteins were found in the miRNA-mRNA network. Gene Ontology and KEGG pathway analyses demonstrated that the target genes of differentially expressed exosomal miRNAs closely related to the PI3K pathway and vesicle transmission. Conclusions: The exosomes derived from cyclic tension-stretched PDLCs can promote the migration of BMSCs. Alternation of microRNA profiles provides a basis for further research on the regulatory function of the exosomal miRNAs of PDLCs during orthodontic tooth movement.

Morphology of the groove of the inferior petrosal sinus: application to better understanding variations and surgery of the skull base

  • Uduak-Obong I. Ekanem;Lukasz Olewnik;Andrea Porzionato;Veronica Macchi;Joe Iwanaga;Marios Loukas;Aaron S. Dumont;Raffaele De Caro;R. Shane Tubbs
    • Anatomy and Cell Biology
    • /
    • v.55 no.2
    • /
    • pp.135-141
    • /
    • 2022
  • Although adequate venous drainage from the cranium is imperative for maintaining normal intracranial pressure, the bony anatomy surrounding the inferior petrosal sinus and the potential for a compressive canal or tunnel has, to our knowledge, not been previously investigated. One hundred adult human skulls (200 sides) were observed and documented for the presence or absence of an inferior petrosal groove or canal. Measurements were made and a classification developed to help better understand their anatomy and discuss it in future reports. We identified an inferior petrosal sinus groove (IPSG) in the majority of specimens. The IPSG began anteriorly where the apex of the petrous part of the temporal bone articulated with the sphenoid part of the clivus, traveled posteriorly, in a slight medial to lateral course, primarily just medial to the petro-occipital fissure, and ended at the anteromedial aspect of the jugular foramen. When the IPSGs were grouped into five types. In type I specimens, no IPSG was identified (10.0%), in type II specimens, a partial IPSG was identified (6.5%), in type III specimens, a complete IPSG (80.0%) was identified, in type IV specimens, a partial IPS tunnel was identified (2.5%), and in type V specimens, a complete tunnel (1.0%) was identified. An improved knowledge of the bony pathways that the intracranial dural venous sinuses take as they exit the cranium is clinically useful. Radiological interpretation of such bony landmarks might improve patient diagnoses and surgically, such anatomy could decrease patient morbidity during approaches to the posterior cranial fossa.