• Title/Summary/Keyword: Bone Microarchitecture

Search Result 23, Processing Time 0.023 seconds

Roles of growth factors, calcitonic polypeptides and neuropeptides in bone metabolism, osteoporosis and rheumatis arthritis

  • Lee, Tae-Kyun;Kim, June-ki;Kim, Kap-Sung;Chang, Jun-Hyuk;Jeong, Ji-cheon;Nam, Kyung-Soo;Kim, Cheorl-Ho
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.9
    • /
    • pp.1-23
    • /
    • 2000
  • Osteoporosis is a common disorder characterized by reduced bone mineral density, deterioration of the microarchitecture of bone tissue and increased risk of fracture. The aim of treatment of osteoporosis is to maintain and, ideally, to restore bone strength safely. In recent years the role of polypeptide growth factors in bone metabolism has begun to appear. It has been proposed that alterations in the expression or production of growth factor can modulate the proliferation and activity of bone forming cells. Thus, the role of structurally diverse peptides for the management and diagnosis of osteoporosis has attracted the attention of many investigators. This paper reviews numerous findings concerning the use of polypeptides, hormones, and growth factors, for the management of osteoporosis. Many of the compounds mentioned here are experimental prototypes of new therapeutic classes. Though it is unlikely that some of the compounds may ever be used clinically, development of safe and efficacious agents in each class will define the future course of therapy for osteoporosis.

  • PDF

Association Between Physical Activity and Quantitative Ultrasound in a Rural Population (신체활동과 골초음파지표와의 연관성)

  • Kim, Seung-Joon;Shin, Min-Ho;Kweon, Sun-Seog
    • Physical Therapy Korea
    • /
    • v.12 no.2
    • /
    • pp.20-27
    • /
    • 2005
  • Osteoporosis is characterized by low bone mass and the microarchitectural deterioration of bone tissue with a consequent increase in bone fragility and susceptibility to fracture. It has been suggested that speed of sound (SOS) and broadband ultrasound attenuation (BUA) of quantitative ultrasound sonography (QUS) may provide information about not only bone density but also the microarchitecture and elastic properties of bone. Physical inactivity reduced mechanical usage and it made process to the bone changes. This study aimed to association between the physical activity and the QUS parameters in 1305 (593 men, 712 women) aged 20 years over in a rural population. Two QUS parameters, BUA (p=.23) and SOS(p=.73) were measured at the right calcaneus of postmenopausal women, no significant associations were observed between sports index and SOS and BUA. These results suggest that work, non-sports leisure physical activity (p<.01) have a significant influence on QUS parameters in a rural population. Physical activity are meaningful predictor of QUS parameters of the calcaneus in a rural population.

  • PDF

Effect of dietary legumes on bone-specific gene expression in ovariectomized rats

  • Park, Yongsoon;Moon, Hyoun-Jung;Paik, Doo-Jin;Kim, Deog-Yoon
    • Nutrition Research and Practice
    • /
    • v.7 no.3
    • /
    • pp.185-191
    • /
    • 2013
  • In previous studies, we found that the consumption of legumes decreased bone turnover in ovariectomized rats. The purpose of the present study is to determine whether the protective effects on bone mineral density (BMD) and the microarchitecture of a diet containing legumes are comparable. In addition, we aim to determine their protective actions in bones by studying bone specific gene expression. Forty-two Sprague-Dawley rats are being divided into six groups during the 12 week study: 1) rats that underwent sham operations (Sham), 2) ovariectomized rats fed an AIN-93M diet (OVX), 3) ovariectomized rats fed an AIN-93M diet with soybeans (OVX-S), 4) ovariectomized rats fed an AIN-93M diet with mung beans (OVX-M), 5) ovariectomized rats fed an AIN-93M diet with cowpeas (OVX-C), and 6) ovariectomized rats fed an AIN-93M diet with azuki beans (OVX-A). Consumption of legumes significantly increased BMD of the spine and femur and bone volume of the femur compared to the OVX. Serum calcium and phosphate ratio, osteocalcin, expression of osteoprotegerin (OPG), and the receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL) ratio increased significantly, while urinary excretion of calcium and deoxypyridinoline and expression of TNF-${\alpha}$ and IL-6 were significantly reduced in OVX rats fed legumes, compared to OVX rats that were not fed legumes. This study demonstrates that consumption of legumes has a beneficial effect on bone through modulation of OPG and RANKL expression in ovariectomized rats and that legume consumption can help compensate for an estrogen-deficiency by preventing bone loss induced by ovarian hormone deficiency.

Effects of Dietary from Safflower Bud on the Osteoporosis in Ovariectomized Rats

  • Lim, Seul Ki;Kim, Dong Il;Park, Min Jung;Choi, Joo Hee;Kim, Young Kuk;Lee, An Chul;Choi, Mi Young;Park, Soo Hyun
    • Biomedical Science Letters
    • /
    • v.20 no.3
    • /
    • pp.156-161
    • /
    • 2014
  • It has been reported that safflower seeds have preventive effects against osteoporosis. Recently, safflower buds (SB) were found to have more useful functional ingredients than safflower seeds. In the current study, we evaluated the anti-osteoporosis effects of SB diet in ovariectomized (OVX) rats. The rats were divided into five groups; sham operated group, OVX alone group, OVX plus $17{\beta}$-estradiol ($E^2$ $10{\mu}g/kg$, i.p.) and OVX plus SB diet feeding group (0.3% or 1%). Feeding of SB diet (0.3% or 1%) to OVX rats markedly increased bone mineral density (BMD) of femurs, compared to the OVX group. The OVX rats exhibited a marked increase in trabecular separation (Tb.Sp) and this change was inhibited by the feeding of SB diet, similar to that seen with OVX+E2 group. Moreover, feeding of SB diet to OVX rats decreased the markers of bone turnover, including osteocalcin and alkaline phosphatase (ALP). These results suggest that SB extract has a bone sparing effect in OVX-induced trabecular bone loss and prevents deterioration of bone microarchitecture by suppressing the rate of bone turnover. Therefore, SB may be useful for preserving bone mass and structure in estrogen deficient women with a potential role in reducing postmenopausal osteoporosis.

Physalin D inhibits RANKL-induced osteoclastogenesis and bone loss via regulating calcium signaling

  • Ding, Ning;Lu, Yanzhu;Cui, Hanmin;Ma, Qinyu;Qiu, Dongxia;Wei, Xueting;Dou, Ce;Cao, Ning
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.154-159
    • /
    • 2020
  • We investigated the effects of physalin A, B, D, and F on osteoclastogenesis induced by receptor activator of nuclear factor κB ligand (RANKL). The biological functions of different physalins were first predicted using an in silico bioinformatic tool (BATMAN-TCM). Afterwards, we tested cell viability and cell apoptosis rate to analyze the cytotoxicity of different physalins. We analyzed the inhibitory effects of physalins on RANKL-induced osteoclastogenesis from mouse bone-marrow macrophages (BMMs) using a tartrate-resistant acid phosphatase (TRAP) stain. We found that physalin D has the best selectivity index (SI) among all analyzed physalins. We then confirmed the inhibitory effects of physalin D on osteoclast maturation and function by immunostaining of F-actin and a pit-formation assay. On the molecular level, physalin D attenuated RANKL-evoked intracellular calcium ([Ca(2+)](i)) oscillation by inhibiting phosphorylation of phospholipase Cγ2 (PLCγ2) and thus blocked the downstream activation of Ca2+/calmodulin-dependent protein kinases (CaMK)IV and cAMP-responsive element-binding protein (CREB). An animal study showed that physalin D treatment rescues bone microarchitecture, prevents bone loss, and restores bone strength in a model of rapid bone loss induced by soluble RANKL. Taken together, these results suggest that physalin D inhibits RANKL-induced osteoclastogenesis and bone loss via suppressing the PLCγ2-CaMK-CREB pathway.

Impact of radiotherapy on mandibular bone: A retrospective study of digital panoramic radiographs

  • Palma, Luiz Felipe;Tateno, Ricardo Yudi;Remondes, Cintia Maria;Marcucci, Marcelo;Cortes, Arthur Rodriguez Gonzalez
    • Imaging Science in Dentistry
    • /
    • v.50 no.1
    • /
    • pp.31-36
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the impact of radiotherapy on mandibular bone tissue in head and neck cancer patients through an analysis of pixel intensity and fractal dimension values on digital panoramic radiographs. Materials and Methods: Thirty patients with radiographic records from before and after 3-dimensional (3D) conformational radiotherapy were selected. A single examiner carried out digital analyses of pixel intensity values and fractal dimensions, with the areas of interest unilaterally located in the right angle medullary region of the mandible below the mandibular canal and posterior to the molar region. Results: Statistically significant decreases were observed in the mean pixel intensity (P=0.0368) and fractal dimension (P=0.0495) values after radiotherapy. Conclusion: The results suggest that 3D conformational radiotherapy for head and neck cancer negatively affected the trabecular microarchitecture and mandibular bone mass.

Fractal dimension, lacunarity, and cortical thickness in the mandible: Analyzing differences between healthy men and women with cone-beam computed tomography

  • Ingrid Garcia Santos;Fernanda Ramos de Faria;Marcio Josse da Silva Campos;Beatriz Alvares Cabral de Barros;Gustavo Davi Rabelo;Karina Lopes Devito
    • Imaging Science in Dentistry
    • /
    • v.53 no.2
    • /
    • pp.153-159
    • /
    • 2023
  • Purpose: The objective of this study was to assess the fractal dimension, lacunarity, trabecular microarchitecture parameters, and cortical linear measurements in the mandibles of male and female individuals to identify differences between them. Materials and Methods: In total, 116 cone-beam computed tomography scans of healthy individuals of different ages (57 men and 59 women, aged between 20 and 60 years) were selected. The following bone parameters were measured: 1) buccal, lingual, and basal cortical bone thickness in 5 standard parasagittal sections (the midline, the left and right sides of the lower lateral incisors, and the left and right sides of the lower canines); 2) the bone volume fraction of 10 sequential axial sections from each patient by creating a volume of interest in the area between the lower canines; and 3) fractal dimension and lacunarity using grayscale images of the same region of the volume of interest in the anterior mandible. Spearman correlation coefficients and the Mann-Whitney test were used. Results: A significant and positive correlation was found between age and cortical thickness, especially in the region of the central incisors. Significant differences between sexes in terms of fractal dimension, lacunarity, and bone volume were found. Women revealed lower fractal dimension values and higher lacunarity and bone volume ratio values than men. Conclusion: Fractal dimension, lacunarity, trabecular bone volume, and cortical thickness were different between men and women of different ages.

Longitudinal Alterations on Lumbar Vertebral Trabecular Bone Qualities during Pregnancy (임신기간 중 척추 해면골의 골질(bone qualities) 변화)

  • Ko, Chang-Yong;NamGung, Bum-Seok;Kim, Hyo-Seon;Kim, Hyun-Dong;Kim, Han-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.95-101
    • /
    • 2010
  • The aim of this study was to detect longitudinal alterations on lumbar vertebral trabecular bone quality (microarchitecture and degree of mineralization) and bone mineral density (BMD) during pregnancy Virginal eighteen mice were used. Then, twelve mice were mated. Mice lumbar vertebrae were scanned before mate, at 7 days of pregnancy (early pregnancy, 6 mice) and immediately after delivery (late pregnancy, 6 mice) by using in-vivo micro-computed tomography Structural parameters, degree of mineralization and BMD were measured. During early pregnancy, there were no significant alterations on structural parameters, degree of mineralization and BMD. At late pregnancy, Tb.Th (11.8%) and BMD (12.7%) were significantly decreased and Tb.N (6.3%), Tb.Pf (43.0%) and BS/BV (15.1%) were significantly increased (p<0.05). Additionally, the lower degree of mineralization was increased, although, the higher degree of mineralization was decreased. These results indicated that the quality and BMD might be not affected during early pregnancy. At late pregnancy, however the bone quality and BMD were likely to be negatively affected.

TNF-α-Induced SOX5 Upregulation Is Involved in the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Through KLF4 Signal Pathway

  • Xu, Lijun;Zheng, Lili;Wang, Zhifang;Li, Chong;Li, Shan;Xia, Xuedi;Zhang, Pengyan;Li, Li;Zhang, Lixia
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.575-581
    • /
    • 2018
  • Postmenopausal osteoporosis (PMOP) is a common systemic skeletal disease characterized by reduced bone mass and microarchitecture deterioration. Although differentially expressed SOX5 has been found in bone marrow from ovariectomized mice, its role in osteogenic differentiation in human mesenchymal stem cells (hMSCs) from bone marrow in PMOP remains unknown. In this study, we investigated the biological function of SOX5 and explore its molecular mechanism in hMSCs from patients with PMOP. Our findings showed that the mRNA and protein expression levels of SOX5 were upregulated in hMSCs isolated from bone marrow samples of PMOP patients. We also found that SOX5 overexpression decreased the alkaline phosphatase (ALP) activity and the gene expression of osteoblast markers including Collagen I, Runx2 and Osterix, which were increased by SOX5 knockdown using RNA interference. Furthermore, $TNF-{\alpha}$ notably upregulated the SOX5 mRNA expression level, and SOX5 knockdown reversed the effect of $TNF-{\alpha}$ on osteogenic differentiation of hMSCs. In addition, SOX5 overexpression increased Kruppel-like factor 4 (KLF4) gene expression, which was decreased by SOX5 silencing. KLF4 knockdown abrogated the suppressive effect of SOX5 overexpression on osteogenic differentiation of hMSCs. Taken together, our results indicated that $TNF-{\alpha}$-induced SOX5 upregulation inhibited osteogenic differentiation of hMSCs through KLF4 signal pathway, suggesting that SOX5 might be a novel therapeutic target for PMOP treatment.

Inhibition of Osteoclast Differentiation by Wheat Bran Butanol Fraction (밀기울 부탄올 분획물이 파골세포의 분화억제에 미치는 효과)

  • Moon, Jung Sun;Moon, Seung-Hee;Shim, Bo Won;Kang, Tae Jin;Lee, Sookyeon;Yim, Dongsool
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.3
    • /
    • pp.257-262
    • /
    • 2013
  • Osteoporosis is a disease of bones that leads to an increased risk of fracture. In osteoporosis, the bone mineral density is reduced, bone microarchitecture deteriorates, and the amount and variety of proteins in bone are altered. $It^{\circ}{\emptyset}s$ caused by the imbalance between born resorption and born formation. Recently natural products from plants have been extensively studied as therapeutic drugs to treat and prevent various diseases. Wheat bran is the hard outer layers of wheat grain and produced as a by-product of milling in the production of refined grains. In oriental medicines, Bu So Maek (Tritici Immaturi Semen) with wheat bran has been used as bronchitis, sedatives and anti-sweating effects. However effects of wheat bran butanol fraction (WBB, 50 ${\mu}g/ml$) in osteoclast differentiation remains unknown yet. Thus we investigated the effects of WBB on RANKL induced osteoclast differentiation. WBB inhibited osteoclast differentiation by downregulating the RANKL-induced activations of MAP kinases. Moreover mRNA expression of osteoclast-mediating molecules such as c-Fos, NFATc1 and DC-STAMP were attenuated by WBB during osteoclast differentiation. The finding of this study show that WBB and its components might prevent osteoclast-related bone loss.