• 제목/요약/키워드: Bone Conduction Hearing Aid

검색결과 4건 처리시간 0.015초

Better Understanding of Direct Bone-Conduction Measurement: Comparison with Frequency-Specific Bone-Conduction Tones and Brainstem Responses

  • Kim, Yeoju;Han, Woojae;Park, Sihun;You, Sunghwa;Kwak, Chanbeom;Seo, Youngjoon;Lee, Jihyeon
    • 대한청각학회지
    • /
    • 제24권2호
    • /
    • pp.85-90
    • /
    • 2020
  • Background and Objectives: The present study aimed to compare thresholds of direct bone-conduction (BC direct) with those of behaviorally measured BC pure-tone audiometry (PTA) and objectively measured BC auditory brainstem response (ABR) to confirm the clinical feasibility of their relationships. Subjects and Methods: Young adults with normal hearing participated in the study to determine the thresholds from three measurements at four testing frequencies. In the BC direct, the vibrator of a bone-anchored hearing aid softband was placed on the right mastoid of each subject. In both PTA and ABR, a B71 bone oscillator was placed on the subject's right mastoid. While the subject's thresholds of BC direct and BC PTA were determined with a clinically routine 5-dB step procedure, BC ABR was conducted to determine the individual's hearing sensitivity by a peak V of the waveform using tone-burst and click stimuli. Results: The BC direct showed a different pattern between low and high frequencies. Precisely, its thresholds were 13.25 and 12.25 dB HL at 0.5 and 1 kHz, respectively, but 19 and 19.75 dB HL at 2 and 4 kHz, respectively. A significant positive correlation existed between BC direct and PTA at 1 kHz, which was also correlated with ABR. Conclusions: Based on the current data, the thresholds of BC direct were similar to BC PTA at low frequencies and BC ABR at high frequencies. The thresholds of BC direct might be predictable at approximately 5 dB higher (or lower) than that in PTA, although a large data set is required for standardization.

Better Understanding of Direct Bone-Conduction Measurement: Comparison with Frequency-Specific Bone-Conduction Tones and Brainstem Responses

  • Kim, Yeoju;Han, Woojae;Park, Sihun;You, Sunghwa;Kwak, Chanbeom;Seo, Youngjoon;Lee, Jihyeon
    • Journal of Audiology & Otology
    • /
    • 제24권2호
    • /
    • pp.85-90
    • /
    • 2020
  • Background and Objectives: The present study aimed to compare thresholds of direct bone-conduction (BC direct) with those of behaviorally measured BC pure-tone audiometry (PTA) and objectively measured BC auditory brainstem response (ABR) to confirm the clinical feasibility of their relationships. Subjects and Methods: Young adults with normal hearing participated in the study to determine the thresholds from three measurements at four testing frequencies. In the BC direct, the vibrator of a bone-anchored hearing aid softband was placed on the right mastoid of each subject. In both PTA and ABR, a B71 bone oscillator was placed on the subject's right mastoid. While the subject's thresholds of BC direct and BC PTA were determined with a clinically routine 5-dB step procedure, BC ABR was conducted to determine the individual's hearing sensitivity by a peak V of the waveform using tone-burst and click stimuli. Results: The BC direct showed a different pattern between low and high frequencies. Precisely, its thresholds were 13.25 and 12.25 dB HL at 0.5 and 1 kHz, respectively, but 19 and 19.75 dB HL at 2 and 4 kHz, respectively. A significant positive correlation existed between BC direct and PTA at 1 kHz, which was also correlated with ABR. Conclusions: Based on the current data, the thresholds of BC direct were similar to BC PTA at low frequencies and BC ABR at high frequencies. The thresholds of BC direct might be predictable at approximately 5 dB higher (or lower) than that in PTA, although a large data set is required for standardization.

정원창 구동기의 진동체 성능 평가를 위한 내이 물리모델 (A Physical Cochlear Model for Transducer Performance Evaluation of Implantable Hearing Aid with Round Window Driver)

  • 신동호;임형규;정의성;성기웅;이정현;조진호
    • 센서학회지
    • /
    • 제22권2호
    • /
    • pp.150-155
    • /
    • 2013
  • Recently, various hearing aids are developed to overcome hearing loss. There are available hearing aids, such as air conduction hearing aid, implantable middle ear hearing aid and so on. But air conduction hearing aid is inconvenience caused by howling, and ossicle chain driving type implantable middle ear hearing aid has some week point due to problem of possible nercobiosis of coupling spot along incus long process. In recent years, in order to improve these shortcomings round window (RW) driving hearing aid has been paying attention. In this paper, the physical cochlear model is proposed for a performance evaluation of the RW driving hearing aids of a transducer. In order to verify an experiment proposed on a performance of physical cochlear model, the transducer which has ossicles characteristics is used. By measuring and comparing the frequency characteristics of transducer with ossicles and human temporal bone, performance of physical cochlear model was verified. As from the result of experiment, it is expected that an implemented cochlear model is useful for evaluating characteristics of RW transducer.

유한요소해석을 이용한 곡면보 기반 진동체의 진동력 향상 방법 (Vibration Power Improvement Method of Curved Beam Based Actuator Using Finite Element Analysis)

  • 박재성;나승대;성기웅;김명남
    • 한국멀티미디어학회논문지
    • /
    • 제22권2호
    • /
    • pp.271-280
    • /
    • 2019
  • Recently, hearing loss patients have been increasing to excessive use of various multimedia devices. One of the hearing rehabilitation systems, bone conduction hearing aid can be used to conductive deafness patients efficiently. However, the conventional bone conduction hearing systems has some problems such as skin diseases, repulsion of patients, and vibration power reduction by skin damping. In this paper, to overcome the conventional problems, we proposed power improvement method by curved beam diaphragm. The proposed method is skin attachment system which is non-implantable, and then the power of transducer is improved by the proposed method. In order to improve the vibration power of diaphragm, variable that has correlation with displacement are extracted, the diaphragm designed by extracted variable. To verify efficient of the proposed method, experiment conducted by finite element analysis. As a result of, the proposed method confirmed improved power to compare with the conventional method and proposed method.