• Title/Summary/Keyword: Bone Characteristics

Search Result 949, Processing Time 0.024 seconds

Use of Expandable Prostheses in Malignant Bone Tumors in Children (소아 악성 골종양의 치료에서 확장형 종양대치물의 이용)

  • Han, Il-Kyu;Lee, Sang-Hoon;Cho, Hwan-Seong;Oh, Joo-Han;Kim, Han-Soo
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.14 no.1
    • /
    • pp.10-16
    • /
    • 2008
  • With the advent of effective chemotherapy and the realization of high economic cost associated with amputation, limb salvage surgery has become the standard of treatment in children with primary malignant bone tumors. Reconstruction after resection of malignant bone tumors of children has to address the leg length inequality and also has to be durable to cope with high functional demands of young patients. Expandable endoprostheses have been used in children for achieving limb length equality with substantial risk of complications. Recently, significant advances in prosthetic designs have reduced the morbidities associated with these prostheses. The purpose of this study was to review the indications, characteristics, complications and recent developments of expandable endoprostheses used for malignant bone tumors in children.

  • PDF

A STUDY OF THE EFFECTS OF SEVERAL BONE-ENHANCING AGENTS (수종 골형성 증진재의 골형성능에 관한 조직형태계측학적 연구)

  • Shin, Min-Cheol;Ryu, Dong-Mok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.5
    • /
    • pp.282-292
    • /
    • 2003
  • Several agents are in use to promote new bone formation during bone graft procedures in maxillofacial region. Among them, we have used crude BMP, PRP, and P-15 for experimentally created defects with accompanying graft materials in the rabbit model. The aim of this study is to analyze the effect of above mentioned agents on bone formation using histologic and histomorphometrical methods, thus to provide experimental support for clinical application of these agents. Six rabbits were used as experimental animals. Four surgical defects were created on the distal femoral heads of each animal using trephine drill. The defects were filled with each agents with accompaning graft materials as experimental groups and particulate corti-co-cancellous autogenous graft as control. For histomorphometric analysis, fluorescent dye was injected at 2week and 1week before sacrifice. Then, the animals were sacrificed at 2, 4 and 8weeks after surgery and histologic and histomorphometric examinations were achieved. At two weeks after bone graft, bone formation and active remodeling process were examined in all experimental groups and the control. But the intensity of such activities of the experiments were somewhat weaker than that of the control. In BMP group, the amount of newly formed osteoid was increased constantly and the amount was preserved constantly in PRP group. But in P-15 group, the amount of newly formed osteoid was decreased with time to 8week after surgery. Histologic findings showed superior bony quantity and quality in PRP group than that of P-15 group. MAR(Mineralization Apposition Rate) of all experimental groups were slower than that of control group. In P-15 group, constant foreign body reaction was observed at all periods and the graft material showed inwardly destroyed characteristics rather to mature. The data from this study provide the basis for future studies for evaluating the long-term remodeling process and foreign body reactions observed in P-15 group and clinical study for predictable use of these agents.

Evaluation of the predisposing factors and involved outcome of surgical treatment in bisphosphonate-related osteonecrosis of the jaw cases including bone biopsies

  • Kim, Tae-Hwan;Seo, Won-Gyo;Koo, Chul-Hong;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.42 no.4
    • /
    • pp.193-204
    • /
    • 2016
  • Objectives: This study examined the statistical relevance of whether the systemic predisposing factors affect the prognosis of surgical treatment of bisphosphonate-related osteonecrosis of the jaw (BRONJ). All cases had undergone bone biopsies to determine the characteristics of the mechanisms of BRONJ by optical microscopy. Materials and Methods: The data included 54 BRONJ cases who underwent surgery and in whom bone biopsies were performed. The results of surgery were evaluated and the results were classified into 3 categories: normal recovery, delayed recovery, and recurrence after surgery. The medical history, such as diabetes mellitus, medication of steroids, malignancies on other sites was investigated for an evaluation of the systemic predisposing factors in relation to the prognosis. The three factors involved with the medication of bisphosphonate (BP) were the medication route, medication period, and drug holiday of BP before surgery. The serum C-terminal cross-linking telopeptide (CTX) value and presence of microorganism colony in bone biopsy specimens were also checked. Statistical analysis was then carried out to determine the relationship between these factors and the results of surgery. Results: The group of patients suffering from diabetes and on steroids tended to show poorer results after surgery. Parenteral medication of BP made the patients have a poorer prognosis after surgery than oral medication. In contrast, the medication period and drug holiday of BP before surgery did not have significance with the results of surgery nor did the serum CTX value and presence of microorganism colony. Necrotic bone specimens in this study typically showed disappearing new bone formation around the osteocytic lacunae and destroyed Howship's lacunae. Conclusion: Although many variables exist, this study could in part, predict the prognosis of surgical treatment of BRONJ by taking the patient's medical history.

Corrosion Behavior of Si,Zn and Mn-doped Hydroxyapatite on the PEO-treated Surface

  • Park, Min-Gyu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.78-78
    • /
    • 2017
  • Pure Titanium and alloy have been widely used in dental implants and orthopedics due to their excellent mechanical properties, biocompatibility and corrosion resistance. However, due to the biologically inactive nature of Ti metal implants, it cannot bind to the living bone immediately after transplantation into the body. In order to improve the bone bonding ability of titanium implants, many attempts have been made to alter the structure, composition and chemical properties of titanium surfaces, including the deposition of bioactive coatings. The PEO method has the advantages of short experiment time and low cost. These advantages have attracted attention recently. Recently, many metal ions such as silicon, magnesium, zinc, strontium, and manganese have received attention in this field due to their impact on bone regeneration. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation and promotes bone metabolism and growth. Manganese (Mn) is an essential trace metal found in all tissues and is required for normal amino acid, lipid, protein and carbohydrate metabolism. The objective of this work was research on the corrosion behavior of Si, Zn and Mn-doped hydroxyapatite on the PEO-treated surface. Anodized alloys was prepared at 270V~300V voltage in the solution containig Zn, Si, and Mn ions. Ion release test was carried out using potentidynamic and AC impedance method in 0.9% NaCl solution. The surface characteristics of PEO treated Ti-6Al-4V alloy were investigated using XRD, FE-SEM, AFM and EDS.

  • PDF

Effect of Zn Content on the Corrosion Behavior of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation

  • Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.159-159
    • /
    • 2017
  • Ti-6Al-4V alloy have been used for dental implant because of its excellent biocompatibility, corrosion resistance, and mechanical properties. However, the integration of such implant in bone was not in good condition to achieve improved osseointergraiton. For solving this problem, calcium phosphate (CaP) has been applied as coating materials on Ti alloy implants for hard tissue applications because its chemical similarity to the inorganic component of human bone, capability of conducting bone formation and strong affinity to the surrounding bone tissue. Various metallic elements are known to play an important role in the bone formation and also affect bone mineral characteristics. Especially, Zn is essential for the growth of the human and Zn coating has a major impact on the improvement of corrosion resistance. Plasma electrolytic oxidation (PEO) is a promising technology to produce porous and firmly adherent inorganic Zn containing TiO2(Zn-TiO2)coatings on Ti surface, and the a mount of Zn introduced in to the coatings can be optimized by altering the electrolyte composition. In this study, effect of Zn content on the corrosion behavior of Ti-6Al-4V alloy after plasma electrolytic oxidation were studied by SEM, EDS, XRD, AC impedance, and potentiodynamic polarization test. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67 mV/s and potential range from -1500 mV to +2000 mV. Also, AC impedance was performed at frequencies ranging from 10 MHz to 100 kHz for corrosion resistance.

  • PDF

Corrosion Behavior of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation in Solutions Containing Ca, P and Zn

  • Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.120-120
    • /
    • 2016
  • Ti-6Al-4V alloy have been used for dental implant because of its excellent biocompatibility, corrosion resistance, and mechanical properties. However, the integration of such implant in bone was not in good condition to achieve improved osseointergraiton. For solving this problem, calcium phosphate (CaP) has been applied as coating materials on Ti alloy implants for hard tissue applications because its chemical similarity to the inorganic component of human bone, capability of conducting bone formation and strong affinity to the surrounding bone tissue. Various metallic elements, such as strontium (Sr), magnesium (Mg), zinc (Zn), sodium (Na), silicon (Si), silver (Ag), and yttrium (Y) are known to play an important role in the bone formation and also affect bone mineral characteristics, such as crystallinity, degradation behavior, and mechanical properties. Especially, Zn is essential for the growth of the human and Zn coating has a major impact on the improvement of corrosion resistance. Plasma electrolytic oxidation (PEO) is a promising technology to produce porous and firmly adherent inorganic Zn containing $TiO_2(Zn-TiO_2)$coatings on Ti surface, and the a mount of Zn introduced in to the coatings can be optimized by altering the electrolyte composition. In this study, corrosion behavior of Ti-6Al-4V alloy after plasma electrolytic oxidation in solutions containing Ca, P and Zn were studied by scanning electron microscopy (SEM), AC impedance, and potentiodynamic polarization test. A series of $Zn-TiO_2$ coatings are produced on Ti dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to +2000mV. Also, AC impedance was performed at frequencies ranging from 10MHz to 100kHz for corrosion resistance.

  • PDF

CLINICAL EVALUATION OF PROGNOSIS OF OSSEOINTEGRATED DENTAL IMPLANT IN TREATMENT OF MAXILLARY EDENTULOUS AREA (골유착 치과 임플란트를 이용한 상악 무치악부 치료의 예후에 관한 임상적 평가)

  • Shim, Won-Bo;Lee, Dong-Keun;Choi, Kyu-Hwan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.21 no.2
    • /
    • pp.189-197
    • /
    • 1999
  • The use of osseointegrated implant has been reported that is an acceptable procedure for the restoration of totally or partially edentulous patient and that offers good predictability of long term success. It is difficult to get high success rate in edentulous maxillae with inadequate bony quality and quantity, and anatomic limitations such as pneumatic maxillary sinus and nasal floor. The various trials such as sinus lifting, bone grafting, guided bone regeneration, trabecular condensation with osteotome, and the use of wide-diameter implant have been introduced to solve these problems. This study was undertaken to assess the evaluation of clinical prognosis of the implant restorations with these various implantation techniques in the maxillary edentulous area. One hundred eight patients were treated with a total of 386 endosseous implants from March 1994 to January 1998 at Dept. of Dentistry, Korea Veterans Hospital in Seoul Korea. The various techniques for implantation in the edentulous maxillae were supplied to overcome the limitations of implant fixation. These techniques consist of sinus lifting, guided bone regeneration, onlay bone grafting, and osteotome trabecular condensation technique. The total success rate of implant restoration of this study was 93% in the maxillae. The success rate of implant restorations with conventional technique was 94.6%, with osteotome trabecular condensation technique was 94.1%, with guided bone regeneration technique was 93.3%, with bone grafting technique was 92.9%, with sinus lifting technique was 83.8%. The success rate on the maxillary anterior area was 95.2% and that on the posterior area was 91.9%. The failures were associated not only with surgical installation techniques but also bony quality and quantity, characteristics of implant, and stress distribution when in function.

  • PDF

Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy Studies on Processed Tooth Graft Material by Vacuum-ultrasonic Acceleration

  • Lee, Eun-Young;Kim, Eun-Suk;Kim, Kyung-Won
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.36 no.3
    • /
    • pp.103-110
    • /
    • 2014
  • Purpose: The current gold standard for clinical jawbone formation involves autogenous bone as a graft material. In addition, demineralized dentin can be an effective graft material. Although demineralized dentin readily induces heterotopic bone formation, conventional decalcification takes three to five days, so, immediate bone grafting after extraction is impossible. This study evaluated the effect of vacuum ultrasonic power on the demineralization and processing of autogenous tooth material and documented the clinical results of rapidly processed autogenous demineralized dentin (ADD) in an alveolar defects patient. Methods: The method involves the demineralization of extracted teeth with detached soft tissues and pulp in 0.6 N HCl for 90 minutes using a heat controlled vacuum-ultrasonic accelerator. The characteristics of processed teeth were evaluated by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Bone grafting using ADD was performed for narrow ridges augmentation in the mandibular area. Results: The new processing method was completed within two hours regardless of form (powder or block). EDS and SEM uniformly demineralized autotooth biomaterial. After six months, bone remodeling was observed in augmented sites and histological examination showed that ADD particles were well united with new bone. No unusual complications were encountered. Conclusion: This study demonstrates the possibility of preparing autogenous tooth graft materials within two hours, allowing immediate one-day grafting after extraction.

Guidance and rationale for the immediate implant placement in the maxillary molar

  • Kezia Rachellea Mustakim;Mi Young Eo;Ju Young Lee;Hoon Myoung;Mi Hyun Seo;Soung Min Kim
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.49 no.1
    • /
    • pp.30-42
    • /
    • 2023
  • Objectives: While the reliability of immediate implant placement in the maxillary molar has been discussed, its significance is questionable. There have been no guidelines for case selection and surgical technique for successful treatment outcomes of immediate maxillary molar implants. Therefore, in this study, we classified alveolar bone height and socket morphology of the maxillary molar to establish guidelines for immediate implant placement. Materials and Methods: From 2011 to 2019, we retrospectively analyzed 106 patients with 148 immediate implants at the Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital. Inclusion and exclusion criteria were applied, and patient characteristics and treatment results were evaluated clinically and radiologically. Results: A total of 29 tapered, sand-blasted, large-grit, and acid-etched (SLA) surfaces of implants were placed in 26 patients. The mean patient age was 64.88 years. Two implants failed and were reinstalled, resulting in a 93.10% survival rate. Fluctuating marginal bone level changes indicating bone regeneration and bone loss were observed in the first year following installation and remained stable after one year of prosthesis loading, with an average bone loss of 0.01±0.01 mm on the distal side and 0.03±0.03 mm on the mesial side. Conclusion: This clinical study demonstrated the significance of immediate implant placement in maxillary molars as a reliable treatment with a high survival rate using tapered SLA implants. With an accurate approach to immediate implantation, surgical intervention and treatment time can be reduced, resulting in patient satisfaction and comfort.

Biologic stability of plasma ion-implanted miniscrews

  • Cho, Young-Chae;Cha, Jung-Yul;Hwang, Chung-Ju;Park, Young-Chel;Jung, Han-Sung;Yu, Hyung-Seog
    • The korean journal of orthodontics
    • /
    • v.43 no.3
    • /
    • pp.120-126
    • /
    • 2013
  • Objective: To gain basic information regarding the biologic stability of plasma ion-implanted miniscrews and their potential clinical applications. Methods: Sixteen plasma ion-implanted and 16 sandblasted and acid-etched (SLA) miniscrews were bilaterally inserted in the mandibles of 4 beagles (2 miniscrews of each type per quadrant). Then, 250 - 300 gm of force from Ni-Ti coil springs was applied for 2 different periods: 12 weeks on one side and 3 weeks contralaterally. Thereafter, the animals were sacrificed and mandibular specimens including the miniscrews were collected. The insertion torque and mobility were compared between the groups. The bone-implant contact and bone volume ratio were calculated within 800 mm of the miniscrews and compared between the loading periods. The number of osteoblasts was also quantified. The measurements were expressed as percentages and analyzed by independent t-tests (p < 0.05). Results: No significant differences in any of the analyzed parameters were noted between the groups. Conclusions: The preliminary findings indicate that plasma ion-implanted miniscrews have similar biologic characteristics to SLA miniscrews in terms of insertion torque, mobility, bone-implant contact rate, and bone volume rate.