• Title/Summary/Keyword: Bonding method

Search Result 1,371, Processing Time 0.026 seconds

The Crytal and Molecular Structure of Morpholinothiosemicarbazide (Morpholinothiosemicarbazide의 結晶 및 分子構造)

  • Chung Hoe Koo;Hoon Sup Kim;Hyun So Shin;Yungja Lee
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.105-114
    • /
    • 1973
  • The crystal structure of morpholinothiosemicarbazide has been determined by single crystal X-ray analysis. The lattice constants are a = 4.19(2), b = 6.56(2) and c = 26.67(4)${\AA}$. The unit cell contains 4 molecules and the space group is$P2_12_12_1$. The atomic parameters have been refined by least-squares method to a final R value of 0.07, based on the 651 observed reflexions. The amino nitrogen atom forms hydrogen bonds to the sulfur atoms of the other molecules related by the two-fold screw axis parallel to the a-axis, the distances of the hydrogen bonds being 3.48 and 3.49${\AA}$. On the other hand, the imino nitrogen atom forms a hydrogen bond to the amino nitrogen atom of the other molecule related by the two-fold screw axis parallel to the a-axis, the distance of the hydrogen bond being 3.04${\AA}$. These three hydrogen bonds arrange the molecules around the two-fold screw axis. Apart from the hydrogen bonding system the structure is held together by van der Waals forces.

  • PDF

Interfacial Adhesion Energy of Ni-P Electroless-plating Contact for Buried Contact Silicon Solar Cell using 4-point Bending Test System (4점굽힘시험법을 이용한 함몰전극형 Si 태양전지의 무전해 Ni-P 전극 계면 접착력 평가)

  • Kim, Jeong-Kyu;Lee, Eun-Kyung;Kim, Mi-Sung;Lim, Jae-Hong;Lee, Kyu-Hwan;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • In order to develop electroless-plated Nickel Phosphate (Ni-P) as a contact material for high efficient low-cost silicon solar cells, we evaluated the effect of ambient thermal annealing on the degradation behavior of interfacial adhesion energy between electroless-plated Ni-P and silicon solar cell wafers by applying 4-point bending test method. Measured interfacial adhesion energies decreased from 14.83 to 10.83 J/$m^2$ after annealing at 300 and $600^{\circ}C$, respectively. The X-ray photoelectron spectroscopy analysis suggested that the bonding interface was degraded by environmental residual oxygen, in which the oxidation inhibit the stable formation of Ni silicide phase between electroless-plated Ni-P and silicon interface.

MARGINAL FIDELITY AND FRACTURE STRENGTH OF IPS EMPRESS $2^{(R)}$ CERAMIC CROWNS ACCORDING TO DIFFERENT CEMENT TYPES

  • Cho Hyun-Ok;Kang Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.6
    • /
    • pp.545-559
    • /
    • 2002
  • There has been increasing use of IPS Empress $2^{(R)}$ owing to easy fabrication method, high esthetics similar to natural teeth, good marginal accuracy, and sufficient fracture strength. However, in clinical application, although a luting agent and the tooth cementation bonding procedure influence the marginal accuracy and fracture strength restoration, there has been a controversy in the selection of proper luting agent. This study was to measure the marginal fidelites and fracture strength of IPS Empress crowns according to three cement types, Protec $cem^{(R)}$, Variolink $II^{(R)}$ and Panavia $21^{(R)}$. After construction of 12 experimental dies for each group, IPS Empress $2^{(R)}$ crowns were fabricated and luted the metal master die prepartion of the maxillary right premolar. Marginal gaps before cementation and after cementation were measured. Buccal incline on the functional cusp of specimens were loaded until the catastrophic failure and fracture strength was measured. The results of this study were as follows: 1. The range of gap was $34.04{\pm}4.84{\mu}m$ before cementation and $37.88{\pm}5.00{\mu}m$ after cementation, which showed significant difference by paired t-test (p<0.05). The difference in the results from marginal accuracy according to measuring point proved to be not statistically significant by two-way ANOVA test (p>0.05). 2. The difference in the results from marginal accuracy according to three cement types Proved that The Variolink $II^{(R)}$ cement group had the least gap, $35.43{\pm}5.03{\mu}m$, and showed superior marginal accuracy while there existed statistic significance in Protec $cem^{(R)}$ cement group, $39.06{\pm}4.41{\mu}m$ or Panavia $21^{(R)}$ cement group, $39.16{\pm}4.39{\mu}m$ by two-way ANOVA test & multiple range test (p<0.05). 3. The difference in the results from fractures strength testing according to three cement type groups proved to be statistically significant (p<0.05). The Variolink $II^{(R)}$ cement group shows highest fracture strength of $1257.33{\pm}226.77N$, Panavia $21^{(R)}$ cement group has $1098.08{\pm}138.45N$, and Protec $cem^{(R)}$ cement group represents the lowest fracture strength of $926.75{\pm}115.75N$. 4. Three different cement groups of different components showed acceptable marginal fidelity and fracture strength. It is concluded that IPS Empress $2^{(R)}$ crowns luted using Variolink $II^{(R)}$ cement group had stronger fracture strength and smaller marginal gap than the other cement groups. Although Variolink $II^{(R)}$ resin cement seemed acceptable to clinical applications in IPS Empress $2^{(R)}$ system, the IPS Empress $2^{(R)}$ system still requires long-term research due to the lack of data in clinical applications.

In vitro study of compressive fracture strength of Empress 2 crowns cemented with various luting agents

  • Kim Min-Ho;Yang Jae-Ho;Lee Sun-Hyung;Chung Hun-Young;Chang Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.3
    • /
    • pp.260-272
    • /
    • 2001
  • All-ceramic restorations have had a more limited life expectancy than metal ceramic restorations because of their low strength. Their relatively lower strength and resistance to fracture have restricted the use of all-ceramic crowns to anterior applications where occlusal loads are lower. But there has been increasing interest in all-ceramic restorations because patients are primarily concerned with improved esthetics. Many efforts have been made to in prove the mechanical properties of dental ceramics. This study was designed to elucidate the influence of the luting agent on the strength of the Empress 2 crown (staining technique) cemented on human teeth. Seventy extracted human permanent molar teeth were chosen. Teeth were prepared for Empress 2 crowns with milling machine on a surveyor. A dental bur was placed in the mandrel that was positioned so that the long axis of the bur was perpendicular to the surveyor base. Dimensions of the Empress 2 crown preparation were $6^{\circ}$ taper on each side, $1.5{\pm}0.1mm$ shoulder margin, and 4mm crown height. The luting cements used in this study were as follow: 1. Uncemented 2. Zinc phosphate cements (Confi-Dental) 3. Conventional glass ionomer cement : Fuji 1 (GC) 4. Resin-modified glass ionomer cements : Fuji plus (GC) 5. Adhesive cements : Panavia F (Kuralay), Variolink II (Vivadent), Choice (Bisco). Fracture test using Instron. The crowns were loaded in compressive force to evaluate the effect of these cements on the breaking strength of these all-ceramic crowns. A steel ball with a diameter of 4mm was placed on the occlusal surface and load was applied to the steel ball by a cylindrical bolt with a crosshead speed of 0.5mm per minute until fracture occurred. The fractured surface was examined using Scanning Electron Microscopic Image (SEM) to discover the correlation between fracture strength and bonding capacity. Within the limitation of this in vitro study design, the results were as follows : 1. fomentations significantly increased the fracture resistance of Empress ceramic crowns compared to control. Uncemented (206.9 N): ZPC (812.9 N): Fuji 1 (879.5 N): Fuji Plus (937.7 N): Choice (1105.4 N): Variolink II (1221.1 N): Panavia F (1445.2 N). 2. Resin luting agent, treated by a silane bond enhancing agents, yielded a significant increase in fracture resistance. In some of the Panavia F group, a fracture extended into dentin. 3. According to SEM images of fractured Empress crowns, the stronger the bond at both interfaces(crown and die), the more fracture strength was acquired.

  • PDF

TREATMENT OF COMPOSITE RESIN RESTORATION WITH THE AIR ABRASIVE TECHNIQUE (Air abrasive technique을 이용한 복합레진 수복 증례)

  • Lee, Chang-Woo;Jang, Ki-Taeg;Lee, Sang-Hoon;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.4
    • /
    • pp.763-770
    • /
    • 1997
  • The air abrasive technique is a non-mechanical method by which teeth are treated before restoration and stains and calculi are removed from tooth surfaces using the kinetic energy of small particles. The air abrasive technique in dentistry was first introduced in the 1950's with as instrument called 'Airdent'. But, as the main restorative materials of the period were amalgam and gold, and the instrument's inability to control the flow of particles caused the particles to be spread throughout the clinics, widespread use was not possible. In the 1990's, as these techincal problems were solved and more interest in new restorative materials rose in an effort to preserve sound tooth structure, new developements took place in instruments related to the air abrasive technique. The air abrasive technique produces less pressure, vibration and heat that might cause patient discomfort and facilitates the preservation of sound tooth structure. It also reduces the need for anesthesia and is less harmful to the pulp. Other advantages include increase in dentin bonding strength of composite resin, lower possibility of saliva contamination and maintenance of a dry field. But there is not direct contact between the nozzle and the tooth, the operator cannot use his or her tactile sense and must rely solely upon visual input. Other disadvantages are: the tooth preparation depends on the operator's ability; alpha-alumina particles, after bouncing off the tooth surface, cause damage to dental mirrors; the equipment is expensive and takes up a certain amount of space in the clinic. The author conducted case report using the air abrasive technique on patient visiting the Department of Pediatric Dentistry at Seoul National University Dental Hospital and arrived at the following conclusions. 1. The tooth preparation capability of different air abrasive devices varied widely among manufacturers. 2. It was more effective in treating early caries lesions and stains compared to lesions where caries had already progressed to produce soft dentin. 3. The cold stream and noise caused by the evacuation system was a major cause of discomfort to pediatric patients. 4. As there is no direct contact with tooth surface when using the air abrasive technique for tooth preparation, considerable experience and skill is required for proper tooth preparation.

  • PDF

Engineering Character of Ultra Rapid Hardening Concrete-Polymer Composite using CAC and Gypsum Mixed CAC (CAC 및 석고혼입 CAC를 사용한 초속경 콘크리트-폴리머 복합체의 공학적 특성)

  • Koo, Ja Sul;Yoo, Seung Yeup;Kim, Jin Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.97-105
    • /
    • 2016
  • Recently, application case of the ultra rapid hardening concrete-polymer composite(URHCPC) are increasing to repair for the deterioration of pavement. But it is a major disadvantage that the main material is expensive and has environmental load. For these reasons, the development of the economic, eco-friendly materials is needed. Calcium Aluminate Composite (CAC), produced by rapid cooling of atomizing method with molten ladle furnace slag, is a material capable of improving the economic feasibility and reducing the environmental load of URHCPC. In this paper, the properties of CAC and gypsum mixed CAC (GC) as alternative materials of RSC according to the types of polymer dispersion were studied. The results were as follows; compressive strength, tensile strength, flexural strength, bonding strength and modulus of elasticity of the composites using CAC or GC showed higher values than those of plain proportion in 3 hour. In later age, they were at the same level as the general proportions. URHCPC using BPD as polymer dispersion had superior strength properties generally. But modulus of elasticity was the same level as the case of using a SBR latex. According to these results, CAC or GC can partially substituted for RSC to product the URHCPC. When URHCPC uses the BPD as the polymer dispersion, it can be improved performance.

Ab Initio Studies of Hexahydroxybenzene Triscarbonate ($C_9O_9$) and Analogous Compounds ($C_9S_9,\;C_9O_6S_3,\;C_9O_3S_6$) (Hexahydroxybenzene Triscarbonate($C_9O_9$)와 유사화합물들의 ab initio 연구)

  • Kwon, Young Hi;Koo, Min Su
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.4
    • /
    • pp.219-228
    • /
    • 1996
  • An ab initio molecular orbital method has been applied to investigation of molecular properties and equilibrium geometries for hexahydroxybenzene triscarbonate (C9O9) and its analogous cyclic compounds (C9S9, C9O6S3, C9O3S6). In these works, the optimized geometry of each compound has been obtained at HF and MP2 levels. These results have shown that the optimized geometries of these compounds prefer D3h planar structure to C3v bowl structure. Calculations of harmonic vibrational frequencies have been also carried out at HF/3-21G* level to analyze normal modes of these compounds. Bonding characters of these compounds are studied by Mulliken and natural populations obtained at HF/6-31G* level. We have also studied the structures and the populations of C6O6 and C6S6 at HF and MP2 levels which are obtained by pyrolyses of C9O9 and analogous compounds. In addition, the single point calculations have been performed to predict the approximate energy barrier for pyrolysis of each compound.

  • PDF

Preparation and Gas Barrier Properties of Chitosan/Clay Nanocomposite Film (Chitosan/Clay 나노복합재료 필름의 제조와 기체투과 특성)

  • Nam Sang Yong;Park Ji Soon;Rhim Ji Won;Park Byung Gil;Kong Sung-Ho
    • Membrane Journal
    • /
    • v.15 no.3
    • /
    • pp.247-254
    • /
    • 2005
  • Chitosan film has potential applications in agriculture, food, and pharmacy. However, films made only from chitosan lack gas barrier and have poor mechanical properties. For enhanced gas barrier and mechanical properties, chitosan/clay nanocomposites have been prepared with montmorillonite (MMT) which is a layered structure of clays and chitosan. The cationic biopolymer, chitosan is intercalated into $Na^+-montmorillonite$ through cationic exchange and hydrogen bonding process. Diluted acetic acid is used as solvent f3r dissolving and dispersing chitosan. Chitosan was intercalated or exfoliated in MMT and it was confirmed by X-ray diffraction method. D-spacing of the characteristic peak from MMT plate in chitosan/clay nanocomposites was moved and diminished. The thermal stability and the mechanical properties of the nanocomposites are measured by TGA and Universal Testing Machine. Gas permeability through the chitosan/clay nanocomposites films decreased due to increased tortuosity made by intercalation of clay in chitosan.

FINITE ELEMENT STRESS ANALYSIS OF A CLASS II COMPOSITE RESIN RESTORATION (2급 와동의 복합레진 충전에 관한 유한요소법적 응력분석)

  • Song, Bo-Kyung;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.627-643
    • /
    • 1995
  • The resistance to fracture of the restored tooth may be influenced by many factors, among these are the cavity dimension and the physical properties of the restorative material. The placement of direct composite resin restorations has generally been found to have a strengthening effect on the prepared teeth. It is the purpose of this investigation to study the relationship between the cavity isthmus and the fracture resistance of a tooth in composite resin restorations. In this study, MO cavity was prepared on the maxillary left first molar and then filled with composite resin. Three dimentional model with 3049 nodes and 2450 8-node blick elements was made by the serial photographic method and isthmus (1/4, 1/3, 1/2 and 2/3 of intercusplal distance between mesiobuccal cusp tip and mesiolingual cusp tip) was varied. Two types of model(B and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall and R model was left unfilled. A load of 1500N was applied vertically on the node from the lingual slope of the mesiobuccal cusp. The results were as follows : 1. There was a significant decrease of stress resulting in increase of fracture resistance in B model when compared with R model. 2. When it comes to stress distribution, the stress was concentrated in the facio-gingival line angle and the buccal side of the distal margin of the cavity in both Band R model. 3. With the increase of the isthmus width, the stress decreased in the area of the facio-gingival line angle, and increased in the area of facio-gingival line angle as well as the buccal side of the distal margin of the cavity in B model. In R model, the stress increased both in the area of facio-gingival line angle and the buccal side of the distal margin of the cavity, therefore the possibility of crack increased. 4. As the width of cavity increased, in B model, the direction of crack moved from horizontal to vertical on the facio-gingival line angle and the facio-pulpal line angle. In R model, the direction of the crack was horizontal on the facio-gingival line angle and moved from horizontal to the $45^{\circ}$ direction on the facio-pulpal line angle.

  • PDF

On the Decomposition of Dimethyl-2, 2-dichlorovinylphosphate (Dimethyl-2, 2-dichlorovinylphosphate의 분해반응에 관한 연구)

  • Sung, Nack-Do;Park, Seung-Heui
    • Applied Biological Chemistry
    • /
    • v.26 no.2
    • /
    • pp.125-131
    • /
    • 1983
  • Formal net charges, bond populations, atomic orbital coefficients, energy components and conformation of dimethyl-2,2-dichlorovinylphosphate have been studied theoretically by using the CNDO/2 molecular orbital calculation method in attempt to describe the reactivity and the stability of the molecule. From the analysis of rate equation, molecular orbital calculations and identification of the hydrolysis products, 2,2-dichloroacetaldehyde and dimethylphosphoric acid, a mechanism of the hydrolysis of dimethyl-2,2-dichlorovinylphosphate(DDVP) has been proposed. The hydrolysis of DDVP proceeds through the mechanism of nucleophilic addition, typical Micheal reaction in basic media. Therefore, it appears probable that the attack by strong nucleophile, hydroxide ion occurs at the increased positive charge $C_2({\alpha})$ atom of a staggered conformation due to the inductive effect (-)I>(+)R of 2,2-dichlorovinyl, electron-attracting group. And then, the hydrolytic scission involves the $C_2({\alpha})-O_3$, ${\pi}-anti-bonding\;orbital({\pi}^*)$ in the subsequent reaction in aqueous solution.

  • PDF