• Title/Summary/Keyword: Bonding layer

Search Result 772, Processing Time 0.035 seconds

Effect of smear layer deproteinization on bonding of self-etch adhesives to dentin: a systematic review and meta-analysis

  • Alshaikh, Khaldoan H.;Hamama, Hamdi H.H.;Mahmoud, Salah H.
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.2
    • /
    • pp.14.1-14.16
    • /
    • 2018
  • Objectives: The aim of this systematic review was to critically analyze previously published studies of the effects of dentin surface pretreatment with deproteinizing agents on the bonding of self-etch (SE) adhesives to dentin. Additionally, a meta-analysis was conducted to quantify the effects of the above-mentioned surface pretreatment methods on the bonding of SE adhesives to dentin. Materials and Methods: An electronic search was performed using the following databases: Scopus, PubMed and ScienceDirect. The online search was performed using the following keywords: 'dentin' or 'hypochlorous acid' or 'sodium hypochlorite' and 'self-etch adhesive.' The following categories were excluded during the assessment process: non-English articles, randomized clinical trials, case reports, animal studies, and review articles. The reviewed studies were subjected to meta-analysis to quantify the effect of the application time and concentration of sodium hypochlorite (NaOCl) and hypochlorous acid (HOCl) deproteinizing agents on bonding to dentin. Results: Only 9 laboratory studies fit the inclusion criteria of this systematic review. The results of the meta-analysis revealed that the pooled average microtensile bond strength values to dentin pre-treated with deproteinizing agents (15.71 MPa) was significantly lower than those of the non-treated control group (20.94 MPa). Conclusions: In light of the currently available scientific evidence, dentin surface pretreatment with deproteinizing agents does not enhance the bonding of SE adhesives to dentin. The HOCl deproteinizing agent exhibited minimal adverse effects on bonding to dentin in comparison with NaOCl solutions.

Study on GZO Thin Films as Insulator, Semiconductor and Conductor Depending on Annealing Temperature (열처리 온도에 따라서 절연체, 반도체, 전도체의 특성을 갖는 GZO 박막의 특성연구)

  • Oh, Teresa
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.342-346
    • /
    • 2016
  • To observe the bonding structure and electrical characteristics of a GZO oxide semiconductor, GZO was deposited on ITO glasses and annealed at various temperatures. GZO was found to change from crystal to amorphous with increasing of the annealing temperatures; GZO annealed at $200^{\circ}C$ came to have an amorphous structure that depended on the decrement of the oxygen vacancies; increase the mobility due to the induction of diffusion currents occurred because of an increment of the depletion layer. The increasing of the annealing temperature caused a reduction of the carrier concentration and an increase of the bonding energy and the depletion layer; therefore, the large potential barrier increased the diffusion current dna the Hall mobility. However, annealing temperatures over $200^{\circ}C$ promoted crystallinity by the defects without oxygen vacancies, and then degraded the depletion layer, which became an Ohmic contact without a potential barrier. So the current increased because of the absence of a potential barrier.

Wireless Graphene Oxide-CNT Bilayer Actuator Controlled with Electromagnetic Wave (전자기웨이브에 의해 제어되는 무선형 그래핀-카본나노튜브 액츄에이터)

  • Xu, Liang;Oh, Il-Kwon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.282-284
    • /
    • 2011
  • Based on graphene oxide and multi-walled carbon nanotube layers, a wireless bi-layer actuator that can be remotely controlled with an electromagnetic induction system has been developed. The graphene-based bi-layer actuator exhibits a large one-way bending deformation under eddy current stimuli due to asymmetrical responses originating from the temperature difference of the two different carbon layers. In order to validate one-way bending actuation, the coefficients of thermal expansion of carbon nanotube and graphene oxide are mathematically formulated in this study based on the atomic bonding energy related to the bonding length. The newly designed graphene-based bi-layer actuator is highly sensitive to electromagnetic wave irradiation thus it can trigger a new actuation mode for the realization of remotely controllable actuators and is expected to have potential applications in various wireless systems.

  • PDF

SHEAR BOND STRENGTH OF LUTING CEMENTS TO DENTIN TREATED WITH RESIN BONDING AGENTS (레진접착제를 도포한 상아질에 대한 합착용 시멘트의 전단결합강도)

  • Kim, Kyo-Chul;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.1
    • /
    • pp.26-49
    • /
    • 1998
  • The purpose of this study was to confirm the formation of hybrid layer and resin tags in dentin tissue and the possibility of bonding between luting cements used for the prosthesis and the resinous surface coated with resin bonding agents to prevent the dentin hypersensitivity after abutment preparation. Some resin bonding agents, which may have the possibility of bonding with polyacrylic acid as a liquid ingredient of polycarboxylate and glass ionomer cements, were selected. All-Blond desensitizer containing NTG-GMA and BPDM, Scotch-Bond Multipurpose plus containing HEMA, and XR-bond containing organophosphate were selected as a coating agent. Dental cements were zinc phosphate, polycarboxylate, and glass ionomer cement. After the exposed dentin surface of premolars was ethced with 10% phosphoric acid and coated with resin bonding agents, the morphology of treated surfaces and the resin tags and hybrid layers on sectioned surfaces were observed by SEM. Shear bond strength between the resin bonding agents and 3 kinds of cements was measured 24 hours after bonding. On the debonded surfaces of the shear bond strength tested specimens, the cement tags and the bonding sites between the resin materials and cements were examined by SEM. Following conclusions were drawn : 1. Coating of dentin with resin bonding agents had no effect on the shear bond strength of zinc phosphate cement. 2. Both of polycarboxylate and glass ionomer cements showed the increased shear bond strength by the dentinal coating with Scotch-Bond Multipurpose plus containing HEMA. However, in the case of dentinal coating with some agents containing NTG-GMA and BPDM or organophosphate, polycarboxylate cement exhibited the lowered shear bond strength, and glass ionomer cement showed the unchanged shear bond strength. 3. Complete obstructions of dentinal tubules were observed on the dentin coated with All-Bond desensitizer or XR-bond, but distinct shape of the orifices of dentinal tubules was observed consistently on the dentin coated with Scotch-Bond Multipurpose plus. 4. The hybrid layer was thickest on the dentin coated with All-Bond desensitizer, and the length of resin tags was longest on the dentin coated with Scotch-Bond Multipurpose plus. 3. On the debonded specimens which had been bonded with polycarboxylate cement or glass ionomer cement after coating with Scotch-Bond Multipurpose plus, the cement tags and the bonding sites between the resinous surface and the cements could be examined.

  • PDF

Influence of metal annealing deposited on oxide layer

  • Kim, Eung-Soo;Cho, Won-Ju;Kwon, Hyuk-Choon;Kang, Shin-Won
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.365-368
    • /
    • 2002
  • We investigated the influence of RTP annealing of multi-layered metal films deposited on oxides layer. Two types of oxides, BPSG and P-7205, were used as a bottom layer under multi-layered metal film. The bonding was not good in metal/BPSG/Si samples because adhesion between metal layer and BPSG oxide layer was poor by interfacial reaction during RTP annealing above 650$^{\circ}C$. On the other hand bonding was always good in metal/ P-TEOS /Si samples regardless of annealing temperature. We observed the interface between oxide and metal layers using AES and TEM. The phosphorus and oxygen profile in interface between metal and oxide layers were different in metal/BPSG/Si and metal/P-TEOS/Si samples. We have known that the properties of interface was improved in metal/BPSG/Si samples when the sample was annealed below 650$^{\circ}C$.

  • PDF

Effect of Post Heat Treatment on Bonding Interfaces in Ti/STS409L/Ti Cold Rolled Clad Materials (Ti/STS409L/Ti 냉연 클래드재의 접합계면특성에 미치는 후열처리의 영향)

  • Bae, D.S.;Kim, W.J.;Eom, S.C.;Park, J.H.;Lee, S.P.;Kim, M.J.;Kang, C.Y.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.140-145
    • /
    • 2011
  • The aim of the present study is to derive optimized post heat treatment temperatures to get a proper formability for Ti/STS409L/Ti clad materials. These clad materials were fabricated by cold rolling followed by a post heat treatment process for 10 minutes at temperatures ranging from $500^{\circ}C$ to $850^{\circ}C$. The microstructure of the interface was observed using a Scanning Electron Microscope(SEM) and an Energy Dispersive X-ray Analyser(EDX) in order to investigate the effects of post heat treatment on the bonding properties of the Ti/STS409L/Ti clad materials. Diffusion bonding was observed at the interfaces with a diffusion layer thickness increasing with the post heat treatment temperature. The diffusion layer was composed of a type of(${\varepsilon}+{\zeta}$) intermetallic compound containing additional elements, namely, Fe, Ti and Ni. The micro Knoop hardness of the Ti/STS409L interfaces was found to increase with heat treatment up to $800^{\circ}C$ and then decrease for temperatures rising up to $850^{\circ}C$. The tensile strength was shown to decrease for heat treatment temperature increasing to $750^{\circ}C$ and then increase rapidly for temperature rising up to $850^{\circ}C$. A post heat treatment temperature range of $700{\sim}750^{\circ}C$ was found to optimize the formability of Ti/STS409L/Ti clad materials.

Evaluation of Adhesive Characteristics of Mixed Cross Laminated Timber (CLT) Using Yellow Popular and Softwood Structural Lumbers

  • Keon-Ho KIM;Hyun-Mi LEE;Min LEE
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.58-69
    • /
    • 2024
  • To evaluate the adhesive characteristics of mixed cross-laminated timber (CLT) using domestic softwoods structural lumber proposed by KS F 3020 and yellow poplar, penetration depth of adhesive and thickness of bonding line were analyzed based on the results of boiling water soaking delamination. 3 Types of adhesives and 2 types of major layer were divided into a 5 ply CLT using yellow popular as minor layer. The bonding performance of the mixed CLT as structural members was evaluated based on the KS F 2081. The thickness of bonding line between layers of the mixed CLT was measured with a scanning electron microscope, and the adhesive penetration depth in the layer members was measured with an optical microscope. As a result of boiling water soaking delamination test of mixed CLT, the CLT specimens using PRF and PUR adhesives met the requirements of KS F 2081. It was verified that the penetration path of the adhesive in the layes was mainly through the tracheid cell in the case of Japanese larch and Korean red pine layers, and through the vessel and radial tissue in yellow popular layers. The penetration depth of the adhesive was the highest for the PRF adhesive under the same pressing time conditions, and the thickness of the bonding line was in inverse proportion to the penetration depth in the case of the PUR adhesive.

Soft Magnetic Properties of Fe-Hf-N Films Reacted with Bonding Glass (접합유리와 반응된 Fe-Hf-N 박막의 연자기 특성)

  • Kim, Kyung-Nam;Kim, Byong-Ho;Je, Hae-June
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.1
    • /
    • pp.6-14
    • /
    • 2003
  • The purpose of this study is to investigate the effect of chemical reaction with a bonding glass on physical and magnetic properties of Fe-Hf-N/SiO$_2$ and Fe-Hf-N/Cr/SiO$_2$ thin films. When the Fe-Hf-N/SiO$_2$ films were reacted with the bonding glass, the soft magnetic properties of them were extremely degraded. At $600^{\circ}C$, the saturation magnetization of the reacted film decreased to 1 kG, and its coercivity increased to 27 Oe, and its effective permeability decreased to 70. It was found that the degradation of soft magnetic properties of the Fe-Hf-N/SiO$_2$ films reacted with the bonding glass were attributed to the oxidation of the Fe-Hf-N layers to HfO$_2$ and Fe$_3$O$_4$. The soft magnetic properties of the Fe-Hf-N/Cr/SiO$_2$ films reacted with the bonding glass were degraded less than those of Fe-Hf-N/SiO$_2$ films. At $600^{\circ}C$, the saturation magnetization of the reacted film decreased to 13.5 kG, and its coercivity increased to 4 Oe, and its effective permeability decreased to 700. It was found that the Cr layer suppressed the oxidation of the Fe-Hf-N layers during the chemical reaction between the Fe-Hf-N layer and bonding glass.

MICROLEAKAGE OF CURRENT DENTIN BONDING SYSTEMS (복합레진 수복시 복합용기 및 단일용기 상아질 접착제의 미세변연누출에 관한 연구)

  • Ryu, Ju-Hee;Park, Dong-Sung;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.55-66
    • /
    • 1999
  • The purpose of this study was to evaluate the microleakage of 5 current dentin bonding systems which are composed of 2 multi-bottle systems(Scotchbond Multi-Purpose, All Bond2) and 3 one-bottle systems(Single bond, One-Step, Prime & Bond). In this in vitro study, class V cavities were prepared on buccal and lingual surfaces of sixty extracted human premolars and molars on cementum margin. The experimental teeth were randomly divided into six groups of 10 samples (20 surfaces) each, Group 1 : Scotchbond Multi-Purpose ; Group 2 : All Bond 2 ; Group 3 : Single Bond ; Group 4 : One-Step ; Group 5 : Prime & Bond ; Group 6 : no bonding agent(control). The bonding agent and composite resin were applied for each group following the manufacturer's instructions. After 500 thermocycling between $5^{\circ}C$ and $55^{\circ}C$, the 60 teeth were placed in 2% Methylene blue dye for 24 hours, then rinsed with tab water. The specimen were embedded in clear resin, then sectioned buccolingually through the center of restoration with a low speed diamond saw. The dye penetration on each of the specimen were then observed with a stereomicroscope at ${\times}20$. The results of study were statistically analyzed using the Student-Newmann-Keul's Methods and the Mann-Whitney Rank Sum Test. The resin/dentin interfaces were examined under Scanning Electron Microscopy. The results of this study were as follows. 1. None of the dentin bonding systems used in this study showed significant difference in leakage values at both the enamel and the dentin margins (P>0.05). 2. In all groups except the control, leakage value seen at the enamel margin was significantly lower than that seen at the dentin margin (P<0.05). 3. Compared to the control group, all the groups treated with dentin bonding systems showed significantly lower leakage value at both enamel and dentin margins (P<0.05). 4. In the SEM view, gaps were observed in the composite resin / dentin interface in group 6 where no dentin bonding agent was used, and in all the other groups (group 1, 2, 3, 4, 5) composite resin, hybrid layer, and dentin were seen to be closely adhering to each other where there were no leakages. Well-developed resin tags 3~100${\mu}m$ in length infiltrated dentinal tubules past the hybrid layer and a hybrid layer 1~5${\mu}m$ thick had developed between the dentinal surface and the composite resin surface.

  • PDF

SELF-ADHESION OF LOW-VISCOSITY COMPOSITES TO DENTIN SURFACE (상아질에 대한 저점도 복합레진의 자가접착에 관한 연구)

  • Cho, Tae-Hee;Choi, Kyoung-Kyu;Park, Sang-Hyuk;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.3
    • /
    • pp.209-221
    • /
    • 2003
  • The objectiveness of this study was to evaluate whether low-viscosity composite can bond effectively to dentin surface without bonding resin. The low-viscosity composites being 50wt% filler content were made by the inclusion of bonding resin of two self-etching systems(Cleafil SE Bond, Unifil Bond) varied with contents as 0, 10, 20, 30, 40, 50wt%. Exposed dentin surfaces of extracted 3rd molars are used. Dentin bond strengths were measured. The tests were carried out with a micro-shear device placed testing machine at a CHS of 1mm/min after a low-viscosity composite was filled into an iris cut from micro tygon tubing with internal diameter approximately 0.8mm and height of 1.0mm. 1 Flexural strength and modulus was increased with the addition of bonding resin. 2. Micro-shear bond strength to dentin was improved according to content of bonding resin irrespective of applying or not bonding resin in bonding procedure, and that of Clearfil SE Bond groups was higher than Unifil Bond. 3. There were no significant difference whether use of each bonding resin in bonding procedure for S-40, S-50, U-50(p>0.05). 4. In SEM examination, resin was well infiltrated into dentin after primed with self-etching primer only for S-50 and U-50 in spite of the formation of thinner hybrid layer. Low viscosity composite including some functional monomer may be used as dentin bonding resin without an intermediary bonding agent. It makes a simplified bonding procedure and foresees the possibility of self-adhesive restorative material.