• Title/Summary/Keyword: Bonding Strength Test

Search Result 755, Processing Time 0.026 seconds

Bonding between high strength rebar and reactive powder concrete

  • Deng, Zong-Cai;Jumbe, R. Daud;Yuan, Chang-Xing
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.411-421
    • /
    • 2014
  • A central pullout test was conducted to investigate the bonding properties between high strength rebar and reactive powder concrete (RPC), which covered ultimate pullout load, ultimate bonding stress, free end initial slip, free end slip at peak load, and load-slip curve characteristics. The effects of varying rebar buried length, thickness of protective layer and diameter of rebars on the bonding properties were studied, and how to determine the minimum thickness of protective layer and critical anchorage length was suggested according the test results. The results prove that: 1) Ultimate pull out load and free end initial slip load increases with increase in buried length, while ultimate bonding stress and slip corresponding to the peak load reduces. When buried length is increased from 3d to 4d(d is the diameter of rebar), after peak load, the load-slip curve descending segment declines faster, but later the load rises again exceeding the first peak load. When buried length reaches 5d, rebar pull fracture occurs. 2) As thickness of protective layer increases, the ultimate pull out load, ultimate bond stress, free end initial slip load and the slip corresponding to the peak load increase, and the descending section of the curve becomes gentle. The recommended minimum thickness of protective layer for plate type members should be the greater value between d and 10 mm, and for beams or columns the greater value between d and 15 mm. 3) Increasing the diameter of HRB500 rebars leads to a gentle slope in the descending segment of the pullout curve. 4) The bonding properties between high strength steel HRB500 and RPC is very good. The suggested buried length for test determining bonding strength between high strength rebars and RPC is 4d and a formula to calculate the critical anchorage length is established. The relationships between ultimate bonding stress and thickness of protective layer or the buried length was obtained.

A Study on the Characteristics and Error Ranges of Automotive Application Component's Mechanical Bonding Strength for the Its Reliability Evaluation (신뢰성 평가를 위한 자동차 전장 부품의 기계적 접합강도 특성 및 오차범위에 관한 연구)

  • Jeon, Yu-Jae;Kim, Do-Seok;Shin, Young-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.949-954
    • /
    • 2011
  • In this study, the characteristics and error ranges of the mechanical bonding strength were analyzed according to before and after thermal shock test for various chips of automotive application component using Sn-3.0Ag-0.5Cu solder. In the after thermal shock test, the mechanical bonding strengths tend to decrease, meanwhile decreasing rates of mechanical strengths were less then 12% at specimen's bonding area below 3.5$mm^2$, and were from 17 to 21% at specimen's bonding area above 12 $mm^2$. On the other hand, Specimen's mean deviation rates were about 5% at specimen's bonding area more than 12 $mm^2$. Inversely, at specimen's bonding area is less then 3.5 $mm^2$, mean deviation rates were increased to about 8%. It means that the smaller device size is, the larger mean deviation rate. In addition, error ranges and deviation rates of the mechanical bonding strengths may differ slightly depending on their bonding area. Furthermore, process conditions as well as method of mechanical reliability evaluation should be established to reduce the error ranges of bonding strength.

Shear bond strength of composite resin to high performance polymer PEKK according to surface treatments and bonding materials

  • Lee, Ki-Sun;Shin, Myoung-Sik;Lee, Jeong-Yol;Ryu, Jae-Jun;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.350-357
    • /
    • 2017
  • PURPOSE. The object of the present study was to evaluate the shear bonding strength of composite to PEKK by applying several methods of surface treatment associated with various bonding materials. MATERIALS AND METHODS. One hundred and fifty PEKK specimens were assigned randomly to fifteen groups (n = 10) with the combination of three different surface treatments (95% sulfuric acid etching, airborne abrasion with $50{\mu}m$ alumina, and airborne abrasion with $110{\mu}m$ silica-coating alumina) and five different bonding materials (Luxatemp Glaze & Bond, Visio.link, All-Bond Universal, Single Bond Universal, and Monobond Plus with Heliobond). After surface treatment, surface roughness and contact angles were examined. Topography modifications after surface treatment were assessed with scanning electron microscopy. Resin composite was mounted on each specimen and then subjected to shear bond strength (SBS) test. SBS data were analyzed statistically using two-way ANOVA, and post-hoc Tukey's test (P<.05). RESULTS. Regardless of bonding materials, mechanical surface treatment groups yielded significantly higher shear bonding strength values than chemical surface treatment groups. Unlike other adhesives, MDP and silane containing self-etching universal adhesive (Single Bond Universal) showed an effective shear bonding strength regardless of surface treatment method. CONCLUSION. Mechanical surface treatment behaves better in terms of PEKK bonding. In addition, self-etching universal adhesive (Single Bond Universal) can be an alternative bonding material to PEKK irrespective of surface treatment method.

Effect of Surface Condition on the Bonding Characteristics of 3Y-$ZrO_2$-Metal Bracket System (3Y-$ZrO_2$ 세라믹과 교정용 브라켓계에서 세라믹의 표면 조건에 따른 접착 거동의 변화)

  • O, Seon-Mi;Kim, Jin-Seong;Lee, Chae-Hyun
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.47-54
    • /
    • 2011
  • Purpose: To investigate shear bonding strength between dental zirconia ceramics with different surface treatment and metal bracket. Methods: Zirconia ceramics(LAVA, 3M ESPE, USA) were divided to 4 groups according to their surface treatment; no surface treatment(G1), sand blasting(G2), silane coating(G3), and sand blasting+silane coating(G4). Specimens were bonded to metal bracket using resin bond($Transbond^{TM}XT$, 3M Unitek, USA). Shear bond strength was measured using universal test machine(3366 INSTRON. U.S.A) with cross head speed of 1 mm/min. Microstructural investigation for fracture surface was performed after shear test. Results: Shear bonding strengths of single surface treatment groups (G2 and G3) were higher than no treatment group(G1). Combined Treatment Group (G4) showed the highest shear bond strength of 9.15MPa. Microstructural observation shows that higher shear bonding strength was obtained when debonding was occurred at metal bracket/resin interface rather than zirconia ceramic/resin interface. Conclusion: Surface treatment of zirconia is necessary to obtain higher bonding strength. Combined treatment can be more effective when surface the surfaces are kept clean and homogeneous.

Stress Distribution Study along Shear Test Specimen Shape for Bonding Strength Verification between Glass and Metal (금속-유리 간 접착강도 검증을 위한 전단시험 시편형상에 따른 응력분포 연구)

  • Kim, Hye-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.455-463
    • /
    • 2022
  • As the need for R&D for high reliability cameras, such as satellite cameras, increases, the reliability of the bonding strength properties between an opto-mechanical structure and an optical component has been secured through specimen tests. However, the widely used specimen shape is not suitable for the application of glass and glass-ceramic material, which is fragile, making it difficult to obtain accurate bonding properties due to stress concentration in glass parts before reaching the bonding strength limit. In this study, the stress distribution characteristics in the shear test condition for various specimen shapes were studied analytically, based on the test results of the glass material's own fracture. Through this, the shape characteristics capable of relieving the stress concentration of the glass part were derived, and the range of the bonding shear strength verifiable by the specimen test was improved.

A Study on the Curing Method to Improve Bonding Strength of Aluminum/CFRP Composites (알루미늄/CFRP 복합재의 접착강도 향상을 위한 경화방법에 관한 연구)

  • 이경엽;양준호;최낙삼
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.130-135
    • /
    • 2002
  • This study investigates the effect of curing method on the bonding strength of aluminum/CFRP composites. The surface of aluminum panel was treated by DC plasma. Lap shear tests and T-peel tests were performed based on the procedure of ASTM 906-94a and ASTMD1876-95, respectively. Test samples were fabricated by using the co-curing method and the secondary curing method. The results showed that the shear strength of test samples made by the co-curing method was 2.5 times greater than that of test samples made by the secondary curing method. The T-peel strength of the co-curing method case was almost 2 times greater than that of the secondary curing method case.

Comparison of the shear bond strength of self-etching dentin bonding agents to dentin (자가부식형 상아질 접착제와 상아질과의 전단결합강도 비교)

  • Noh, Su-Jeong;Kim, Bu-Sub;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.29 no.2
    • /
    • pp.141-150
    • /
    • 2007
  • The purpose of this study was to ascertain the bonding durability of self-etching dentin bonding agents to dentin by means of shear bonding strength. Several acid-etching dentin bonding system (ESPE Z100) and self-etching dentin bonding systems (DEN-FIL, GRADIA DIRET) were used. The occlusion surface of human molars were ground flat to expose dentin and treated with the etch bonding system according to manufactures instruction and followed by composite resin application. After 24hours of storage at 37$^{\circ}C$, the shear bonding strength of the specimens was measured in a universal testing machine with a 1mm/min crosshead speed. An one-way analysis of variance and the scheffe test were performed to identify significant differences (p<0.05). The bonded interfacial surfaces and treated dentin surfaces were examined using a SEM. Through the analysis of shear bond strength data and micro-structures of dentin-resin interfaces, following results are obtained. In dentin group, the shear bond strength of DEN-FIL showed statistical superiority in comparison to the other groups and followed by ESPE Z100 and GRADIA DIRECT (p<0.05).

  • PDF

Bond Properties of CFRP Rebar in Fiber Reinforced High Strength Concrete with Surface Treatment Methods of Reinforcing Fibers (보강섬유의 표면처리에 따른 섬유보강 고강도콘크리트와 CFRP 보강근의 부착특성)

  • Park, Chan-Gi;Won, Jong-Pil;Cha, Sang-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.275-282
    • /
    • 2009
  • The effects of surface treatment method of reinforcing fiber on the bonding strength between carbon fiber reinforced polymer rebar (CFRP rebar) and high strength concrete have been evaluated in this study. The structural PVA fiber is coated with a proprietary hydrophobicoiling agent and crimped type polyolefin based structural synthetic fiber is deformed with a geometrical modification were used for the reinforcing fiber. The compressive tests have been performed to evaluate the strength property of high strength concrete depending on the surface treatment method of fiber. The bonding property between the high strength concrete and the CFRP rebar was evaluated by means of direct bonding test. The test results indicated that the surface treatment method of fiber effect on the bonding behavior of high strength concrete and CFRP rebar. Also, as the development and propagation of splitting cracks were controled by adding fibers into the high strength concrete, the bonding behavior, bond strength and relative bonding strength of CFRP rebar and high strength concrete were significantly improved.

Measurement of Glass-Silicon Interfacial fracture Toughness and Experimental Evaluation of Anodic Bonding Process based on the Taguchi Method (다구찌 방법에 의한 유리-실리콘 양극접합 계면의 파괴인성치 측정 및 양극접합공정 조건에 따른 접합강도 분석)

  • Kang, Tae-Goo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1187-1193
    • /
    • 2002
  • Anodic bonding process has been quantitatively evaluated based on the Taguchi analysis of the interfacial fracture toughness, measured at the interface of anodically bonded silicon-glass bimorphs. A new test specimen with a pre-inserted blade has been devised for interfacial fracture toughness measurement. A set of 81 different anodic bonding conditions has been generated based on the three different conditions for four different process parameters of bonding load, bonding temperature, anodic voltage and voltage supply time. Taguchi method has been used to reduce the number of experiments required for the bonding strength evaluation, thus obtaining nine independent cases out of the 81 possible combinations. The interfacial fracture toughness has been measured for the nine cases in the range of 0.03∼6.12 J/㎡. Among the four process parameters, the bonding temperature causes the most dominant influence to the bonding strength with the influence factor of 67.7%. The influence factors of other process parameters, such as anodic voltage and voltage supply time, bonding load, are evaluated as 18%, 12% and 2.3%, respectively. The maximum bonding strength of 7.23 J/㎡ has been achieved at the bonding temperature of 460$\^{C}$ with the bonding load of 45gf/㎠, the applied voltage of 600v and the voltage supply time of 25minites.

EFFECTS OF THE DIFFERENT CERAMIC BRACKET BASES ON SHEAR BOND STRENGTH (도재브라켓 접착면의 처리방식이 전단결합강도에 미치는 영향)

  • Kim, Jin-Oh;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.24 no.4 s.47
    • /
    • pp.957-967
    • /
    • 1994
  • The purpose of this study was to evaluate the effects of different bases of ceramic brackets on shear bond strength and to observe failure patterns of bracket bondings. Lower bicuspid brackets whose bases designed for the macromechanical and silane treated chemical bonding those for silane treated chemical bonding, those for micromechanical bonding, and those for macromechanical bonding were tested as experimental groups, and foil mesh-backed metal brackets as a control group. All the brackets were bonded with $Mono-Lok\;2^{(TM)}$ on the labial surface of extracted human lower bicuspids after etching the enamel with $38\%$ phosphoric acid solution for 60 seconds. The shear bond strengths were measured on the universal test machine after 24 hours passed in the $37^{\circ}C$ water bath. The gathered data were evaluated and tested by ANOVA and Duncan's multiple range test, and those results were as follows. The shear bond strengths of brackets for macromechanical and chemical bonding, those for chemical bonding, and those for micromechanical bonding were not different (p>0.05), but showed statistically higher than those of metal bracket and those of ceramic bracket for micromechanical bonding(p<0.05). The shear bond strengths of ceramic bracket for micromechanical bonding showed statistically lower than those of metal bracket(p<0.05). The enamel fractures and/or ceramic bracket fractures were observed in the cases of higher bond strength than that of metal bracket. These results supported that silane treated base of ceramic bracket show higher shear bond strength than that of metal bracket, and suggested that micromechanical form of ceramic bracket bases show higher shear bond strength than that of macromechanical form.

  • PDF