• Title/Summary/Keyword: Bondgraph

Search Result 16, Processing Time 0.149 seconds

Development of Wave Power Generator using Horizontal Motions of the Wave (파랑의 수평운동을 이용한 파력발전장치 개발)

  • Hwang, S.S.;Park, I.H.;Lee, D.S.;Yang, K.U.
    • Journal of Drive and Control
    • /
    • v.12 no.2
    • /
    • pp.7-13
    • /
    • 2015
  • In this study, we suggested the wave power generator using horizontal motions of the wave for use in the coastal sea. The length of the horizontal movement of the wave in the vicinity of the sea surface is larger than the length of the vertical reciprocating movement of the wave, hence the proposed device has a wave power transmission plate. In addition, because the motion of the wave is maximum to the sea surface, by arranging the buoyancy tanks at the top of the wave power transmission plate, it is always capable of vertical movement in accordance with the sea surface. To confirm the usefulness of the proposed wave power generator, we constructed a mathematical model of the wave power generator and carried out simulation using bondgraph. Furthermore, the efficiency was verified by measuring the degree of electrical energy production through a preliminary experiment.

DEVELOPMENT OF FUEL CELL HYBRID ELECTRIC VEHICLE PERFORMANCE SIMULATOR

  • Park, C.;Oh, K.;Kim, D.;Kim, H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.287-295
    • /
    • 2004
  • A performance simulator for the fuel cell hybrid electric vehicle (FCHEV) is developed to evaluate the potentials of hybridization for fuel cell electric vehicle. Dynamic models of FCHEV's electric powertrain components such as fuel cell stack, battery, traction motor, DC/DC converter, etc. are obtained by modular approach using MATLAB SIMULINK. In addition, a thermodynamic model of the fuel cell is introduced using bondgraph to investigate the temperature effect on the vehicle performance. It is found from the simulation results that the hybridization of fuel cell electric vehicle (FCEV) provides better hydrogen fuel economy especially in the city driving owing to the braking energy recuperation and relatively high efficiency operation of the fuel cell. It is also found from the thermodynamic simulation of the FCEV that the fuel economy and acceleration performance are affected by the temperature due to the relatively low efficiency and reduced output power of the fuel cell stack at low temperature.

Response characteristics of a CVT vehicle (무단변속기(CVT) 차량의 응답특성)

  • Kim, K. W.;Kwan, H. B.;Kim, H. S.;Eun, T.;Park, C. I
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.99-109
    • /
    • 1992
  • The response characteristics of a CVT vehicle is investigated numerically by using a Bondgraph model. Simulation result show the continuous behavior of the engine and the speed ratio for the CVT vehicle compared to the discrete behavior of the automatic transmission. Also, the optimal operation of the CVT which is derived from the speed ratio-torque-axial force equation from the previous works. It is found that the speed ratio of CVT has to be controlled corresponding to the optimal CVT ratio that makes the engine run on the optimal operating line.

  • PDF

Mechanical Loss Model for a Metal Belt CVT (금속벨트 CVT 동력전달 손실모델)

  • Ryu, Wan-Sik;Kim, Pil-Gu;Kim, Hyun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.81-87
    • /
    • 2006
  • In this paper, the belt-pulley mechanical loss is investigated. A bondgraph model for the mechanical loss is developed from the viewpoint of the power flow by assuming that all power losses are attributed to the torque loss. The mechanical loss model consists of transient and steady state part. The coefficients of the power loss model are obtained from the experiments. It is found from the simulations and experiments that the steady state loss depends on the line pressure, input torque and rotational speed while the transient loss depends on the rotational speed, shift speed and the inertial torque.

Dynamic Characteristics of Clutch System for an Automatic Transmission (자동변속기 클러치 시스템의 동특성 해석)

  • Kim, Ju Hwan;Kim, Hyun-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.284-294
    • /
    • 1996
  • In this paper, dynamic characteristics of an AT clutch system were investigated considering the dynamics of check ball and hydraulic control valves. Dynamic model of a pressure control solenoid valve (PCSV) was obtained by Bondgraph and permeance method. Also, the clutch piston and check ball dynamics were modeled by considering the effect of centrifugal force of the oil entrapped in the clutch chamber. In order to validate the dynamic models obtained, plunger displacement of PCSV and pressure response of the clutch supply lines were compared with the available experimental data, which were in good accordance with the numerical results. Using the dynamic model of the clutch system, simulations were performed to investigate the effect of the rotational speed on the response of clutch cylinder pressure, clutch piston and check ball displacement, and oil flow rate into the cylinder and flow rate out of the check valve.

Proposition of Automatic Ship Mooring Using Hydraulic Winch (유압 윈치를 이용한 선박 자동 계선법)

  • Hur, J.G.;Yang, K.U.
    • Journal of Drive and Control
    • /
    • v.10 no.4
    • /
    • pp.14-21
    • /
    • 2013
  • The numerical analysis of the automatic ship mooring system which was equipped in the ship for trying to berth at the pier was performed in this study. The automatic ship mooring using hydraulic winch was a new method that had not need to change the existing devices and to help a pilot ship of outside. The numerical results of the proposed mooring system including ship motion were that the speed and rolling phenomenon of ship was affected by changing in the ship weight and affected the slope maintenance and yaw degree of ship if there has a trim of stern. Also, a static force of ship at the initial movement was important to calculate the mooring power. The moving force and inertial force of ship on the vertical direction was confirmed for the mooring stability. Therefore, the power and velocity of hydraulic mooring winch should be determined by considering the significant characteristics such as weight, velocity, inertial force and moving force of ship.