• Title/Summary/Keyword: Bond stress

Search Result 581, Processing Time 0.039 seconds

Bond Stress-Slip Model of Reinforced Concrete Member under Repeated Loading (반복하중을 받는 철근콘크리트 부재의 부착응력-슬립 모델)

  • Oh, Byung-Hwan;Kim, Se-Hoon;Kim, Ji-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.104-107
    • /
    • 2004
  • The crack widths of reinforced concrete flexural members are influenced by repetitive fatigue loadings. The bond stress-slip relation is necessary to estimate these crack widths realistically. The purpose of the present study is, therefore, to propose a realistic model for bond stress-slip relation under repeated loading. To this end, several series of tests were conducted to explore the bond-slip behavior under repeated loadings. Three different bond stress levels with various number of load cycles were considered in the tests. The present tests indicate that the bond strength and the slip at peak bond stress are not influenced much by repeated loading if bond failure does not occur. However, the values of loaded slip and residual slip increase with the increase of load cycles. The bond stress after repeated loading approaches the ultimate bond stress under monotonic loading and the increase of bond stress after repeated loading becomes sharper as the number of repeated loads increases. The bond stress-slip relation after repeated loading was derived as a function of residual slip, bond stress level, and the number of load cycles. The models for slip and residual slip were also derived from the present test data. The number of cycles to bond slip failure was derived on the basis of safe fatigue criterion, i.e. maximum slip criterion at ultimate bond stress.

  • PDF

RESEARCH FOR BOND STRESS-RELATIVE SLIP RELATIONSHIP (부착응력-상대슬립 관계에 대한 연구)

  • 고원준;김진호;서봉원;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.221-226
    • /
    • 2002
  • This paper deals with the estimation of the bond stress based on experimental data that were tensed by axial force on both sides. It is certificated that the concrete stress condition clearly affects the bond-slip relationship. The proposed method utilizes the conventional bond-slip theories as well as the characteristics of deformed reinforcement and concrete cross-sectional area. An analytical equation for the estimation of the bond stress is formulated as the function of non-dimensional factors (e.g. bond stress, relative slip, etc.). The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental data of Ikki (1996, 1999) and the representative bond stress equations of Shima (1987). The analytical results presented in this paper indicate that the proposed method can be effectively estimated the bond stress-relative slip relationship.

  • PDF

Analysis for Strength Estimation of Adhesive Joints (접착이음의 강도평가에 대한 해석)

  • 박성완;이장규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.98-107
    • /
    • 2004
  • The objectives of this research are to establish the criteria of peel occurrence considering the shape of bond terminus and to compare the strength properties of some adhesive joints. The criteria of feel occurrence at the bond terminus was suggested. Peel loads of some adhesive joint(butt joint, T -shape specimen, single lap joint) were determined from tensile tests. Principal stress distributions of these joints were determined from finite element method analysis. Then, peel occurrence was estimated with intensity of stress singularity ' $K_{prin.}$' when the terminus shape was square, with average principal stress when the terminus shape was rounded. The conclusions are summarized as follows; (1) In the non-filleted model(e.g., butt joint, T-shape specimen), principal stress shows singularity at the bond terminus, intensity of stress(principal stress) singularity ' $K_{prin.}$&apso; can use as the criteria of peel occurrence at the bond terminus. (2) In the filleted model(e.g., single lap joint), principal stress doesn't show singularity at the bond terminus. Average principal stress can use as the criteria of peel occurrence at the bond terminus.'t show singularity at the bond terminus. Average principal stress can use as the criteria of peel occurrence at the bond terminus.

  • PDF

Bond properties of steel and sand-coated GFRP bars in Alkali activated cement concrete

  • Tekle, Biruk Hailu;Cui, Yifei;Khennane, Amar
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.123-131
    • /
    • 2020
  • The bond performance of glass fibre reinforced polymer (GFRP) bars and that of steel bars embedded in Alkali Activated Cement (AAC) concrete are analysed and compared using pull-out specimens. The bond failure modes, the average bond strength and the free end bond stress-slip curves are used for comparison. Tepfers' concrete ring model is used to further analyse the splitting failure in ribbed steel bar and GFRP bar specimens. The angle the bond forces make with the bar axis was calculated and used for comparing bond behaviour of ribbed steel bar and GFRP bars in AAC concrete. The results showed that bond failure mode plays a significant role in the comparison of the average bond stress of the specimens at failure. In case of pull-out failure mode, specimens with ribbed steel bars showed a higher bond strength while specimens with GFRP bars showed a higher bond stress in case of splitting failure mode. Comparison of the bond stress-slip curves of ribbed steel bars and GFRP bars depicted that the constant bond stress region at the peak is much smaller in case of GFRP bars than ribbed steel bars indicating a basic bond mechanism difference in GFRP and ribbed steel bars.

Bond Characteristics of Reinforced Concrete Beams According to Material Age (콘크리트 재령에 따른 철근콘크리트 보의 부착응력에 관한 실험적 연구)

  • Ryu, Soo-Hyun;Choi, Hyo-Seok;Lee, Joo-Il;Yu, Ho-Hyun;Jeong, Jae-Hun;Kim, Jin-Mu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.103-109
    • /
    • 2002
  • Reinforced concrete structure resist to external load caused by integration of steel bar and concrete and this integration is obtained from bond stress between steel bar and concrete. Researches of bond stress between steel bar and concrete have been performed by many researcher, but existent researches of bond stress are concerned with compression strength of well cured concrete and insufficient study of bond stress according to early material. The secure regular strength of concrete in early age is caused by rapid velocity of early hardening process, but questionable bond stress in early age is proportion to strength of that. So this study performed experiments to compare bond stress according to material age and compression strength. The result is showed that bonding strength in early material age compare the ratio of concrete compression strength with the ratio of maximum bond stress the later inferior on the former.

Bond Stress in Concrete Pilled Steel Tubular Column (CFT 기둥의 부착응력에 관한 연구)

  • 권승희;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.93-98
    • /
    • 2001
  • CFT column has excellent structural properties due to the composite action between concrete and steel tube. The bond behavior between the constituent elements has to be found for analyzing the behavior of CFT column. A new model is necessary because most of existing models for bond stress-slip relationship of the deformed bar cannot be applied to the CFT column. Therefore, the objective of this research is to develop a new model related to the bond behavior of CFT column considering the relation between bond stress and vertical stress, and the distribution of lateral stress under the confinement created by steel casing. From equilibrium condition, the formula for relationship between bond stress and vertical stress is derived, and the relationship for the lateral stresses of the CFT column section is obtained by an Airy stress function. The experiments are performed for five CFT column specimens axially loading on concrete alone. The relation between bond strength and lateral stress is investigated from the regression analysis using the measured strains. Finally a new bond strength model is proposed, which is able to predict the relationship for the stress of each direction of CFT column loading on concrete.

Bond Strength Properties of Antiwashout Underwater Concrete (수중 불분리성 콘크리트의 부착 강도 특성에 관한 연구)

  • 김명식;김기동;윤재범
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.89-99
    • /
    • 2000
  • The objective of this study is to investigate the bond strength properties of antiwashout underwater concrete. The arrangement of bars (vertical bar, horizontal upper bar, horizontal lower bar), condition of casting and curing (fresh water, sea water), type of fine aggregate (river sand, blended sand(river sand : sea sand = 1:1), and proportioning strength of concrete (210, 240, 270, 300, 330kgf/$\textrm{cm}^2$)are chosen as the experimental parameters. The test results(ultimate bond stress) are compared with bond and development provisions of the ACI Building Code(ACI 318-89) and proposed equations from previous research(which was proposed by Orangun et. al). The experimental results show that ultimate bond stress of antiwashout underwater concrete which arranged bar on the horizontal lower, used the blend sand, and was cast and cured in the fresh water are higher that other conditions. The ultimate bond stress were increased in proportion to {{{{( SQRT {fcu }) }}3 2. From this study, rational analytic formula for the ultimate bond stress are to be from compressive strength of concrete.

A Study on the Bond Properties of Carbon Fiber Sheets used for Strengthening Structures (구조물 보강용 탄소섬유쉬트의 부착특성에 관한 연구)

  • 황진석;김지영;백명종;박형철;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.653-658
    • /
    • 1997
  • Recently, carbon Fiber sheet (CFS) is frequently used for strengthening deteriorated concrete structures. To strengthening damaged structures, the property and characteristic of the bond between CFS and the concrete surface must be understood. The tensile test of single lap shear specimen was performed to study bond strength, bond stress distribution and stress transfer between CFS and concrete surface according to the bond length. Based on the test results, there were ultimate influence length (UIL) in which bond stress was distributed, and ultimate strain reduction ratio (USRR) by which strain was reduced linearly. Bond resisting force (BRF) was estimated by UIL and USRR, and which was compared with ultimate loads. According to the results of comparison, it was shown that ultimate bond strength could be estimated reasonablely by BRF.

  • PDF

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

Local bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.449-466
    • /
    • 2015
  • This paper aims to study the local bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete (LWAC). The experimental variables of the local bond stress-slip tests include concrete strength (20, 40 and 60 MPa), deformed steel bar size (#4, #6 and #8) and coarse aggregate (normal weight aggregate, reservoir sludge lightweight aggregate and waterworks sludge lightweight aggregate). The test results show that the ultimate bond strength increased with the increase of concrete compressive strength. Moreover, the larger the rib height to the diameter ratio ($h/d_b$) of the deformed steel bars is, the greater the ultimate bond stress is. In addition, the suggestion value of the CEB-FIP Model Code to the LWAC specimen's ultimate bond stress is more conservative than that of the normal weight concrete.