• Title/Summary/Keyword: Bond number

Search Result 309, Processing Time 0.025 seconds

A Theoretical Study on the FRP Retrofit of Existing Circular Bridge Piers for Seismic Performance Enhancement (기존 원형교각의 내진성능 향상을 위한 FRP 보강에 대한 이론적 연구)

  • Kwon Tae-Gyu;Choi Young-Min;Hwang Yoon-Knok;Yoon Soon-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.61-69
    • /
    • 2004
  • The bridge piers under service suffered a brittle failure due to the deterioration of lap-spliced longitudinal reinforcement without developing its flexural capacity or ductility. The earthquake induced lateral force results in tension which causes bond-slip failure at the lap-spliced region in circular bridge piers. In this case, such a brittle failure can be controlled by the seismic retrofit using FRP laminated circular tube. The retrofitted piers using FRP laminated circular tube showed significant improvement in seismic performance due to FRP's confinement effect. This paper presents the analytical results on the seismic strengthening effect of circular bridge piers with poor lap-splice details and strengthened with FRP laminated circular tube. FRP's confinement effect is predicted by the classical elasticity solution for the laminated circular tube manufactured with several layers. The FRP laminated circular tube induces the flexural failure instead of a bond-slip failure of the circular reinforced concrete piers under seismic induced lateral forces. To investigate the correctness and effectiveness of analytical solution derived in this study, the analytical results were compared with the experimental data and it was confirmed that the results were correlated well each other, The effects on the confinement of FRP laminated circular tube, such as the number of layers, the fiber orientations, and the mechanical properties, were investigated. From the parametric study, it was found that the number of layers, the fiber orientations, and the major Young's modulus (E11) of the FRP laminated circular tube were the dominant parameters affecting the confinement of reinforced concrete circular bridge piers.

INFLUENCE OF COOLING RATE ON THERMAL EXPANSION BEHAVIOR AND FLEXURAL FAILURE OF PFM SYSTEMS (도재 냉각방법의 차이가 금속-도재간 열팽창 양상과 결합력에 미치는 영향)

  • Lim, Ae-Ran;Lim, Ho-Nam;Park, Nam-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.1
    • /
    • pp.165-191
    • /
    • 1990
  • Although a number of studies have been performed to assure that residual stress caused by a mismatch of alloy porcelain thermal expansion can contribute to clinical failure of a ceramometal restoration, the interactive influence of cooling rate on the magnitude of thermal expansion difference and on bond strength between them have not been extensively analyzed. The objective of this study was to determine the influence of cooling rate and the number of firing cycles on the expansion mismatch and the flexural failure resistance of metal porcelain strip. Tested alloys included one Pd-Ag alloy, one Ni-Cr-Be alloy with two kinds of porcelain, Vita and Ceramco. Metal specimens were cast into rods with a height of 13mm and a diameter of 5mm. Subsequently, the castings were subjected to scheduled firing cycles without porcelain. And the porcelain specimens after being fired were trimmed into a bar with a final dimension of $5{\times}5{\times}25mm$. Thermal expansions of the alloys and porcelains were measured by using a push rod or a differential dialometer respecitvely. Porcelain glass transition temperatures and expansion values were derived alloy-porcelain pairs were assessed by comparing expansion values of the components at a porcelain glass transition temperature. Calculations were made using combinations of a Ni-Cr alloy or Pd-Ag alloy with each of two porcelain products. Metal-porcelain strip specimens were subjected to four point loading in an Instron testing machine until crack occured at the metal-cramic interface at the time of sharp decrease of load on recorder. On the basis of this study, the following conclusions may be stated: 1. Regardless of the kinds of ceramometal combinations, both of calculated and experimental data revealed that the double fired specimens exhibited a significantly lower flexural strength. 2. By the rise of the amount of mismatch, bond strength were decreased. 3. Thermal expansion value of Pd-Ag alloys were higher than that of Ni-Cr alloys. 4. Expansion curves of metal were proportional to the increase of temperature and were not affected by the experimental conditions, however porcelains did not show the same magnitude of metal, and a shift of the glass transition temperature to higher temperatures was observed when cooled rapidly 5. Alloy-porcelain thermal compatibility appeared more dependent on the porcelain than the alloy.

  • PDF

INFLUENCE OF COOLING RATE ON THERMAL EXPANSION BEHAVIOR AND FLEXURAL FAILURE OF PFM SYSTEMS (도재 냉각방법의 차이가 금속-도재간 열팽창 양상과 결합력에 미치는 영향)

  • Lim, Ae-Ran;Lim, Ho-Nam;Park, Nam-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.1
    • /
    • pp.111-137
    • /
    • 1991
  • Although a number of studies have been performed to assure that residual stress caused by a mismatch of alloy porcelain thermal expansion can contribute to clinical failure of a ceramometal restoratoin, the interactive influence of cooling rate on the magnitude of thermal expansion difference and on bond strength between them have not been extensively analyzed. The objective of this study was to determine the influence of cooling rate and the number of firing cycles on the expansion mismatch and the flexural failure resistance of metal porcelain strip. Tested alloys included one Pd-Ag alloy, one Ni-Cr-Be alloy with two kinds of porcelain, Vita and Ceramco. Metal specimens were cast into rods with a height of 13mm and a diameter of 5mm. Subsequently, the castings were subjected to scheduled firing cycles without porcelain. And the porcelain specimens after being fired were trimmed into a bar with a final dimension of 5 x 5 x 25mm. Thermal expansions of the alloys and porcelains were measured by using a push rod or a differential dialometer respectively. Porcelain glass transition temperatures and expansion values were derived alloy- porcelain pairs were assessed by comparing expansion values of the components at a porcelain glass transition temperature. Calculations were made using combinations of a Ni-Cr alloy or Pd-Ag alloy with each of two porcelain products. Metal- porcelain strip specimens were subjected to four point loading in an Instron testing machine until crack occured at the metal-cramic interface at the time of sharp decrease of load on recorder. On the basis of this study, the following conclusions may be stated : 1. Regardless of the kinds of ceramometal combinations, both of calculated and experimental data revealed that the double fired specimens exhibited a significantly lower flexural strength. 2. By the rise of the amount of mismatch, bond strength were decreased. 3. Thermal expansion value of Pd-Ag alloys were higher than of Ni-Cr alloys. 4. Expansion curves of metal were proportional to the increase of temperature and were not affected by the experimental conditions, however porcelains did not show the same magnitude of metal, and a shift of the glass transition temperature to higher temperatures was observed when cooled rapidly. 5. Alloy- porcelain thermal compatibility appeared more dependent on the porcelain than the alloy.

  • PDF

An Empirical Analysis of Influencing Factors on Success of Equity Crowdfunding: By Industry and Funding type (투자형 크라우드펀딩의 성공 영향 요인 실증분석: 업종과 유형별 분류를 중심으로)

  • Kim, Jong-Yun;Kim, Chul Soo
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.3
    • /
    • pp.35-51
    • /
    • 2019
  • The two main goals of this study are to derive independent factors affecting the success rate of crowdfunding and to empirically analyze the variation of independent factors' effects on the success of crowdfunding by industry (Internet, culture/art, manufacturing/distribution), and funding type (stock type, bond type). To identify the success factors of crowdfunding for invigoration and strategic utilization, first, several variables were refined after interviews with experts and platform operators with investment experiences in numerous crowdfunding projects. Then, independent factors affecting project involvement were categorized as follows: a characteristic of project, participant activity, and enterprise. Also, the results derived from the influence of independent variables on crowdfunding after moderating effects were driven. Selected independent factors in this study are as follows: crowdfunding period, target amount, visual contents, minimum account money, number of comments, number of SNS followers, level of interest, financial Statement disclosure, investment attraction, venture company, intellectual property rights disclosure, and business operation period. Selected moderating factors in this study are as follows: industry (Internet, culture/art, manufacturing/distribution), and funding type (stock type, bond type). In conclusion, a discussion of the academical and practical implications and a suggestion of directions for further research are explained.

Amorphous Chalcogenide Solids Doped with Rare-Earth Element : Fluorescence Lifetimes and the Glass Structural Changes (희토류 원소 첨가 비정질 찰코지나이드 : 형광 수명과 유리 구조 변화의 관계)

  • Choi Yong Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.696-702
    • /
    • 2004
  • Lifetime of excited electronic states inside the 4f configuration of rare-earth elements embedded in chalcogenide glasses is very sensitive to medium-range structural changes of the host glasses. We have measured lifetimes of the 1.6$\mu\textrm{m}$ emission originating from Pr$\^$3+/ : ($^3$F$_3$, $^3$F$_4$)\longrightarrow$^3$H$_4$ transition in amorphous chalcogenide samples consisting of Ge, Sb, and Se elements. The measured lifetimes fumed out to have their maximum at the mean coordination number of -2.67, which arises accordingly from structural changes of the host glasses from 2 dimensional layers to 3 dimensional networks. This new finding supports that the so-called topological structure model together with chemically ordered network model is adequate to explain relationship between the emission properties of rare-earth elements and the medium-range structures of amorphous chalcogenide hosts with a large covalent bond nature. Thus, it is validated to predict site distribution and lifetime of rare-earth elements doped in chalcogenide glasses simply based on their mean coordination number.

Experimental and numerical investigation of the seismic performance of railway piers with increasing longitudinal steel in plastic hinge area

  • Lu, Jinhua;Chen, Xingchong;Ding, Mingbo;Zhang, Xiyin;Liu, Zhengnan;Yuan, Hao
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.545-556
    • /
    • 2019
  • Bridge piers with bending failure mode are seriously damaged only in the area of plastic hinge length in earthquakes. For this situation, a modified method for the layout of longitudinal reinforcement is presented, i.e., the number of longitudinal reinforcement is increased in the area of plastic hinge length at the bottom of piers. The quasi-static test of three scaled model piers is carried out to investigate the local longitudinal reinforcement at the bottom of the pier on the seismic performance of the pier. One of the piers is modified by increased longitudinal reinforcement at the bottom of the pier and the other two are comparative piers. The results show that the pier failure with increased longitudinal bars at the bottom is mainly concentrated at the bottom of the pier, and the vulnerable position does not transfer. The hysteretic loop curve of the pier is fuller. The bearing capacity and energy dissipation capacity is obviously improved. The bond-slip displacement between steel bar and concrete decreases slightly. The finite element simulations have been carried out by using ANSYS, and the results indicate that the seismic performance of piers with only increasing the number of steel bars (less than65%) in the plastic hinge zone can be basically equivalent to that of piers that the number of steel bars in all sections is the same as that in plastic hinge zone.

Influence of Number of Twist on Tensile Behavior of High Performance Fiber Reinforced Cementitious Composites with Twisted Steel Fibers (비틀림 강섬유의 비틀림 횟수가 고성능 섬유보강 시멘트 복합재료의 인장거동에 미치는 영향)

  • Kim, Dong-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.575-583
    • /
    • 2010
  • This research investigated the influence of the number of twist on single fiber pullout behavior of Twisted steel (T-) fiber and tensile behavior of high performance cementitious composites reinforced with the (T-) fibers (HPFRCC). Micromechanical pullout model for T- fibers has been applied to analytically investigate the influence of various fiber parameters including the number of twist on single fiber pullout behavior; and, to optimize the number of twist to generate larger pullout energy during fiber pullout without fiber breakage. In addition, an experimental program including single fiber pullout and tensile tests has been performed to investigate the influence of twist ratio experimentally. Two types of T- fiber with different twisted ratios, T(L)- fiber (6ribs/30 mm) and T(H)- fiber (18ribs/30 mm), were tested. T(L)- fiber produced higher equivalent bond strength (larger pullout energy) although T(H)- fiber produced higher pullout stress during pullout since T(H)- fiber showed fiber breakage during pullout. Tensile test results confirmed that T(L)- fiber in high strength mortar generates better tensile performance of HPFRCC, e.g., load carrying capacity, strain capacity and multiple micro-cracking behavior.

Efficiency Test for Surface Protecting Agents for the Chemical Resistance of Concrete Structures Using Sulfur Polymers (Sulfur Polymer를 사용한 콘크리트 구조물용 내화학성 표면보호재의 성능 평가)

  • Lee, Byung-Jae;Lee, Eue-Sung;Chung, Woo-Jung;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.1-8
    • /
    • 2014
  • Structures requiring chemical resistance are usually coated with surface protecting agents, but the cost for maintenance and re-construction is incurred due to the low durability. Therefore, in this study, sulfur was polymerized and the performance was examined so that it could be used as the concrete surface protecting agents for structures requiring chemical resistance. The evaluation results indicated that for the spray of the sulfur polymer surface coating agents, the application of the gravity type was appropriate; and for the number of coating times, about 3 cycle spray gave the best results. For the surface condition of the concrete to be coated with the surface protecting agents, outstanding quality was obtained above room temperature ($20{\sim}30^{\circ}C$), and the bond strength increased as the temperature increased. The evaluation results of the strength characteristics depending on the filler content of the surface protecting agents indicated that about 20~40% filler mixing contributed to the strength improvement as it reduced the shrinkage of the sulfur polymer. Also, the mixing of silica showed larger increase in the bond strength than the mixing of fly ash, and the most outstanding bond strength characteristics could be obtained by the mixing of both silica and fly ash. In the case of the chemical resistance, the strength reduction was minimized and outstanding chemical resistance was obtained when the fly ash and silica were substituted by 20%, respectively. The performance evaluation of the chloride ion penetration indicated that for the specimens coated with the sulfur polymer surface protecting agents, the chloride ion penetration resistance increased by 29~48% compared to the specimen without the coating of the surface protecting agent. The examination of the coating condition of the surface protecting agents, compressive strength, bond strength, chemical resistance, and salt damage resistance indicated that in the range of this study, the optimal level was when the silica and fly ash were substituted by 20%, respectively, as the filler for the sulfur polymer.

THE EFFECTS OF MECHANICAL AND THERMAL FATIGUE ON THE SHEAR BOND STRENGTH OF ORTHODONTIC ADHESIVES (기계적 및 열적 피로가 교정용 접착제의 결합강도에 미치는 영향)

  • Shin, Wan-Cheal;Kim, Jong-sung;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.26 no.2 s.55
    • /
    • pp.175-186
    • /
    • 1996
  • The purpose of this study was to examine the effects of mechanical and thermal fatigue on the shear bond strength(SBS) of stainless steel mesh brackets bonded to human premolar teeth with 3 no-mix adhesives. The stainless steel mesh bracket was Ormesh(Ormco, .022 slot) and three types of no-mix adhesives were Ortho-one(Bisco), $Monolok^2$(RMO), $System\;1^+$(Ormco). The $10^6$ loadcycles of $17.4{\times}10^2sin2{\pi}ftlg{\cdot}cm$ and the 1,000 thermocycles of 15 second dwell time in each bath of $5^{\circ}C\;and\;55^{\circ}C$ were acturated as mechanical and thermal fatigue stress, and SBS were measured after each fatigue test. The fracture sites were analyzed by stereoscope and scanning electron microscope. The results obtained were summarized as follows; 1. Before thermocycles, $Monolok^2$ showed the highest Knoop hardness number(KHN, $64.03kg/mm^2$) and $System\;1^+$ showed the lowest value($31.60kg/mm^2$). After thermocycling, $Monolok^2$ also showed the highest KHN($38.03kg/mm^2$) and $system\;1^+$ showed the minimum($20.87kg/mm^2$). The KHN of Ortho-one, $Monolok^2,\;System\;1^+$ significantly decreased after thermocycling (P<0.01). 2. In static shear bond test, three adhesives had no significant differences in the SBS(P>0.01). 3. After thermocycling test, $Monolok^2$ showed the maximum SBS($19.34{\pm}2.75MPa$) and Ortho-one showed the minimum SBS($13.66{\pm}2.23MPa$). The SBS of Ortho-one(P<0.01) and $System\;1^+$(P<0.05) significantly decreased after $10^3$ thermocycles. 4. The SBS of three adhesives after $10^6$ loadcycles were similar and were not significantly decreased compared with static group(P>0.01). 5. The failure sites were usually bracket/resin interface in all groups irrespective of experimental conditions.

  • PDF

Response Analysis and crack Pattern Evaluation of Two Story Masonry Structure under the seismic Load (2층 조적조의 지진하중에 의한 거동해석 및 균열평가)

  • 김희철;이경훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.179-190
    • /
    • 1998
  • All brick masonry buildings are constructed without any structural limitation under earthquake load, in Korea. However, it is necessary to evaluate response for seismic loads since the number of earthquake occurances in Korea is increasing. In this paper, the load resisting capacities of brick masonry buildings are investigated by finite element analysis method and the response due to seismic load are analyzed by applying 0.12g earthquake load. It was observed that the two story masonry building is not safe under the 0.12g earthquake load, especially at the first floor. The cracks were occurred under the bond beam and around the openings due to the stress concentration.

  • PDF