• Title/Summary/Keyword: Bond Performance

Search Result 694, Processing Time 0.033 seconds

Physicochemical Characterization and NMR Assignments of Ginsenosides Rb1, Rb2, Rc, and Rd Isolated from Panax ginseng

  • Cho, Jin-Gyeong;Lee, Min-Kyung;Lee, Jae-Woong;Park, Hee-Jung;Lee, Dae-Young;Lee, Youn-Hyung;Yang, Deok-Chun;Baek, Nam-In
    • Journal of Ginseng Research
    • /
    • v.34 no.2
    • /
    • pp.113-121
    • /
    • 2010
  • The fresh ginseng roots were extracted with aqueous methanol, and the obtained extracts were partitioned using ethyl acetate, n-butanol, and water, successively. The repeated silica gel and octadecyl silica gel column chromatogaraphy for n-butanol fraction afforded four diol ginseng saponins, ginsenosides $Rb_1$, $Rb_2$, $R_c$, and Rd. The physicochemical, spectroscopic, and chromatographic characteristics of these ginsenosides were measured and compared with those reported in the literature. Some of the peak assignments in previously published $^1H$- and $^{13}C$-nuclear magnetic resonance (NMR) spectra were inaccurate. This study employed two-dimensional NMR experiments, including $^1H-^1H$ correlation spectroscopy, heteronuclear single quantum correlation, and heteronuclear multiple bond connectivity, to determine exact peak assignments.

Fundamental Properties and Hydration Characteristics of Mortar Based on MgO Added Industrial By-products (산업부산물을 첨가한 MgO 기반 모르타르의 기초물성 및 수화특성에 관한 연구)

  • Hong, Sung-Gul;Kim, Do-Young;Lee, Dong-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.565-572
    • /
    • 2013
  • Hydration and physical characteristics of chemically-bonded phosphate ceramic (CBPC) binder based on dead-burned Mg-O with six different blends are investigated for efficient repair construction material by retarding set phase with $H_3BO_3$. The test specimen of the blender with silica fume shows higher compressive strength after 75 days. The CBPC with silica fume results in higher modulus of rupture that others. The test specimens of CBPC eludes lower calcium ion than that of OPC (Ordinay Portland Cement). The X-ray diffraction pattern shows that hydration results in the formation of magnesium hydroxide, M-S-H gel and $MgCO_3$ for the specimen with silica fumes. Combination with calcium for MgO is not desirable due to no formation of chemical bond between two components. Based on the experimental program, the mixture of MgO and silica fume shows efficient performance in strength and durability.

Finite Element Analysis for Fracture Resistance of Fiber-reinforced Asphalt Concrete (유한요소해석을 통한 섬유보강 아스팔트의 파괴거동특성 분석)

  • Baek, Jongeun;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.77-83
    • /
    • 2015
  • PURPOSES : In this study, a fracture-based finite element (FE) model is proposed to evaluate the fracture behavior of fiber-reinforced asphalt (FRA) concrete under various interface conditions. METHODS : A fracture-based FE model was developed to simulate a double-edge notched tension (DENT) test. A cohesive zone model (CZM) and linear viscoelastic model were implemented to model the fracture behavior and viscous behavior of the FRA concrete, respectively. Three models were developed to characterize the behavior of interfacial bonding between the fiber reinforcement and surrounding materials. In the first model, the fracture property of the asphalt concrete was modified to study the effect of fiber reinforcement. In the second model, spring elements were used to simulated the fiber reinforcement. In the third method, bar and spring elements, based on a nonlinear bond-slip model, were used to simulate the fiber reinforcement and interfacial bonding conditions. The performance of the FRA in resisting crack development under various interfacial conditions was evaluated. RESULTS : The elastic modulus of the fibers was not sensitive to the behavior of the FRA in the DENT test before crack initiation. After crack development, the fracture resistance of the FRA was found to have enhanced considerably as the elastic modulus of the fibers increased from 450 MPa to 900 MPa. When the adhesion between the fibers and asphalt concrete was sufficiently high, the fiber reinforcement was effective. It means that the interfacial bonding conditions affect the fracture resistance of the FRA significantly. CONCLUSIONS : The bar/spring element models were more effective in representing the local behavior of the fibers and interfacial bonding than the fracture energy approach. The reinforcement effect is more significant after crack initiation, as the fibers can be pulled out sufficiently. Both the elastic modulus of the fiber reinforcement and the interfacial bonding were significant in controlling crack development in the FRA.

Flexural Capacity of the Encased(Slim Floor) Composite Beams with Web Openings -Deep Deck Plate and Asymmetric Steel Beam to be Welded Cover Plate- (매립형 (슬림플로어) 유공 합성보의 휨성능 평가 -춤이 깊은 데크플레이트와 비대칭 H형강 철골보-)

  • Kwak, Myong Keun;Heo, Byung Wook;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.575-586
    • /
    • 2004
  • This paper presents an experimental study on the flexural capacity of an encased(slim-floor) composite beam, which is a wider plate under bottom flange of H-beam with web openings. Five simple full-scale bending tests were conducted on the encased(slim-floor) composite beams at varying steel beam heights (250mm and 300mm), positions of web openings, and loading conditions. The test results revealed that the web-open encased composite beam had sufficient composite action, without any additional shear connection devices, because of the inherent shear-bond effects between the steel beam and the concrete, and a stable structural performance without web-opening reinforcements.

Effect of Particle Shape and Size of Calcium Carbonate on Physical Properties of Paper (탄성칼슘에 성상이 종이물성에 미치는 영향)

  • 한영림;서영범
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.1
    • /
    • pp.7-12
    • /
    • 1997
  • This study was intended to investigate the proper shape and size of calcium carbonate for the improvement of paper properties and its end use performance. We loaded calcium carbonate of various shapes and size in the handsheet and measured their physical and optical properties. Results obtained from the study are summarized as follows : 1. Due to different particle shapes and sizes, precipitated calcium carbonate (PCC) contributed greater to bulk improvement than ground calcium carbonate (GCC). Scalenohedral form of PCC produced the bulkiest sheet, GCC made the sheet bulkier as average particle size increases. 2. Tensile strength increased as average particle size was increasing. GCC kept tensile strength more effectively than PCC. The effect of particle size on tensile strength was much more pronounced as filler addition level was increasing. 3. Over the average particle size of 6.99$\mu$m, GCC gave much higher burst strength and internal bond than PCC did. In the filler levels of 20% and 30%, GCC by using bigger size fillers showed 50~100% improvement in some cases than PCC at the same filler content. 4. Tear strength increased as average particle size was increasing. At the filler level of 30%, PCC decreased tear greatly. 5. Over the average particle size of 13.56$\mu$m, GCC kept bending stiffness greater than PCC. Due to its shape, Scalenohedral form of PCC showed higher stiffness than others at the same particle size. 6. Cubic and acicular form of PCC improved light scattering coefficient very effectively. Light scattering coefficient of GCC decreased as average particle size increased. 7. Both of particle shape and size of filler were important factor in developing optical properties and bending stiffness. Particle size was the only important factor in developing other strength properties

  • PDF

Effects of Al-doping on IZO Thin Film for Transparent TFT

  • Bang, J.H.;Jung, J.H.;Song, P.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.207-207
    • /
    • 2011
  • Amorphous transparent oxide semiconductors (a-TOS) have been widely studied for many optoelectronic devices such as AM-OLED (active-matrix organic light emitting diodes). Recently, Nomura et al. demonstrated high performance amorphous IGZO (In-Ga-Zn-O) TFTs.1 Despite the amorphous structure, due to the conduction band minimum (CBM) that made of spherically extended s-orbitals of the constituent metals, an a-IGZO TFT shows high mobility.2,3 But IGZO films contain high cost rare metals. Therefore, we need to investigate the alternatives. Because Aluminum has a high bond enthalpy with oxygen atom and Alumina has a high lattice energy, we try to replace Gallium with Aluminum that is high reserve low cost material. In this study, we focused on the electrical properties of IZO:Al thin films as a channel layer of TFTs. IZO:Al were deposited on unheated non-alkali glass substrates (5 cm ${\times}$ 5 cm) by magnetron co-sputtering system with two cathodes equipped with IZO target and Al target, respectively. The sintered ceramic IZO disc (3 inch ${\phi}$, 5 mm t) and metal Al target (3 inch ${\phi}$, 5 mm t) are used for deposition. The O2 gas was used as the reactive gas to control carrier concentration and mobility. Deposition was carried out under various sputtering conditions to investigate the effect of sputtering process on the characteristics of IZO:Al thin films. Correlation between sputtering factors and electronic properties of the film will be discussed in detail.

  • PDF

Investigation of Maximum Strength and Effective Bonding Length at the Interface Between Structure and GFRP Material Under Freeze-thaw Cycles and Applied Different Bonding Materials (동결융해 및 부착재료 변화에 따른 GFRP-구조물 경계면의 최대 부착강도 및 유효부착길이 평가)

  • Choi, Hyun Kyu;Jung, Woo Young;Ahn, Mi Kyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.107-115
    • /
    • 2011
  • This research studies the behavior of the FRP-concrete interface subjected to two environmental substances. Frist is to investigate the behavior by the application of different bonding materials at the interface between FRP and concrete, second is to understand a long-term performance at the interface by Freeze-thaw actions. The parameters considered in this research are the maximum bonding strength and the effective bonding length at the FRP-concrete interface. In the first experimental phase, three types of specimens are fabricated and tested considering the number of applied bonding materials and the Freeze-thaw tests are performed to evaluate the behavior of the interface in the cycle range of 0 to 300 cycles. Finally, it is known that there is a 5~7% difference of the effective bonding length between applied bonding materials and the values for the maximum stress and the effective length under Freeze-thaw action are varied randomly as the freeze-thaw cycle is increased even though initial reduction of their capacities are occurred.

A Study on the Joint Property by the Surface Treatment Method on the Jointing Method of PET Film using the High Hardness Liquid (고경질 도막을 이용한 PET 필름 접합공법의 필름 표면처리 방법에 따른 접합특성 연구)

  • Lee, Jong-Suk;Kim, Young-Sam;Shin, Hong-Chol;Kim, Young-Geun;Kang, Chung-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.153-159
    • /
    • 2014
  • This research reviewed the joint and duration characteristics depending on the surface treatment condition and lap spliced length in the PET film jointing method using the high hardness liquid material. As a result, the corona discharge treatment was improved to the contact angle, joint tensile strength, and joint peel resistance compared to non-treatment. Particularly, a surface treatment E (Corona discharge + Primer + PU bond + Polyester fabric) turned out to the best, and especially when the lap spliced length is longer than 15mm, stable joint performance was secured under the long term deterioration treatment of 16 weeks. Thus, the joint is considered to be applicable as the water-proof material.

Pot Life of Structural Adhesives for FRP Composite Used in Strengthening RC Members (구조보강용 FRP 함침·접착수지의 사용가능시간 분석)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.191-198
    • /
    • 2008
  • Pot life of two-component adhesives such as epoxy resin used in saturating FRP composite is defined as a certain time periods which can guarantee the bond performance and workability of epoxy resin. Therefore, adhesion procedure in strengthening RC members should be completed before chemical hardening is going on at job site. It has been known that there are two types of test method to evaluate the pot life of structural adhesive based on apparent viscosity or temperature change. This study is to verify the test methods how to assess pot life of structural adhesive for FRP composites by means of changing in apparent viscosity and means of exothermic reaction temperature proposed in existing test standards. Results of each test method were compared and analyzed, and reasonable test and evaluation method were suggested.

Policy Recommendations for Enhancing the Role of Credit Rating Agencies in the Debt Market (채권시장에서의 신용평가기능 개선을 위한 정책방향)

  • Lim, Kyung-Mook
    • KDI Journal of Economic Policy
    • /
    • v.28 no.1
    • /
    • pp.1-47
    • /
    • 2006
  • Even after significant changes in the financial market due to the financial crisis the corporate debt markets have seen created turmoil caused such as by Daewoo, Hyundai, and credit card companies in the financial system. These lagging improvements of corporate debt markets are mainly due to inadequate market infrastructure. Specifically, the credit rating agencies have not been successful in providing proper and timely information on the loan repayment abilities of debtors. This study analyzes past performance of credit rating agencies in Korea and tries to develop policy implications to improve the role of credit rating agencies based on the recent discussions on credit rating agencies by academics and the SEC. In addition, this study focuses on unique operation environments of Korean credit rating agencies, which have kept credit rating agencies from providing fair, timely, and useful information. To warrant proper operation of credit rating agencies, it is essential to cope with unique problems in Korean credit rating agencies. We classify the unique problems of Korean credit rating agencies into ownership and governance structure, conflict of interests due to ancillary fee-based business, legal recognition of credit rating in the court, and code of conduct problem, etc. and propose policy directions to improve the quality and credibility of credit ratings.

  • PDF