• Title/Summary/Keyword: Bond Coat

Search Result 92, Processing Time 0.017 seconds

Thermal Durability of 4YSZ Thermal Barrier Coating Deposited by Electron Beam PVD (전자빔을 이용한 물리기상증착법으로 제조된 열차폐용 4 mol% YSZ 코팅의 내열특성)

  • Park, Chanyoung;Yang, Younghwan;Kim, Seongwon;Lee, Sungmin;Kim, Hyungtae;Lim, Daesoon;Jang, Byungkoog;Oh, Yoonsuk
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.460-466
    • /
    • 2013
  • 4 mol% Yttria-stabilized zirconia (4YSZ) coatings with $200{\mu}m$ thick are fabricated by Electron Beam Physical Vapor Deposition (EB-PVD) for thermal barrier coating (TBC). $150{\mu}m$ of NiCrAlY based bond coat is prepared by conventional APS (Air Plasma Spray) method on the NiCrCoAl alloy substrate before deposition of top coating. 4 mol% YSZ top coating shows typical tetragonal phase and columnar structure due to vapor phase deposition process. The adhesion strength of coating is measured about 40 MPa. There is no delamination or cracking of coatings after thermal cyclic fatigue and shock test at $850^{\circ}C$.

Fabrication and Characterization of 7.5 wt% Y2O3-ZrO2 Thermal Barrier Coatings Deposited by Suspension Plasma Spray (서스펜션 플라즈마 용사법을 이용한 7.5 wt% Y2O3-ZrO2 열차폐코팅 제조 및 평가)

  • Lee, Won-Jun;Oh, Yoon-Suk;Lee, Sung-Min;Kim, Hyung-Tae;Lim, Dae-Soon;Kim, Seongwon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.598-604
    • /
    • 2014
  • Considerable research efforts have been explored attempting to enhance the thermal durability of thermal barrier coatings (TBCs) at the high operating temperatures of gas turbines. In this study, the suspension plasma spray (SPS) process was applied to produce TBCs with a segmented structure by using an yttria-stabilized zirconia (YSZ) suspension. Four different experiment sets were carried out by controlling the ratio between surface roughness of the bond coat and feed stock size ($R_a/D_{50}$) in order to examine the effect of $R_a/D_{50}$ ratio on the microstructure of SPS-prepared coatings. When the $R_a/D_{50}$ had a high value of 11.8, a deposited thick coating turned out to have a cone-type columnar microstructure. In contrast, at the low $R_a/D_{50}$ values of 2.9 and 0.18, a deposited thick coating appeared to have a dense, vertically-cracked microstructure. However, with the very low $R_a/D_{50}$ value of 0.05 the coating was delaminated.