• 제목/요약/키워드: Bond's Equation

검색결과 46건 처리시간 0.021초

승용차용 연속가변 ER댐퍼의 성능연구 (Performance Investigation of a Continuously Variable ER Damper for Passenger Vehicles)

  • 김기선;장유진;최승복;정재천;서문석;여문수
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.69-77
    • /
    • 1995
  • This paper presents performance investigation of a continuously variable ER(Electro-Rheological) damper for passenger vehicles. A dynamic model of the damper is formulated by incorporating electric field-dependent Bingham properties of the ER fluid. The Bingham properties are experimentally obtained through Couette type electroviscous measurement with respect to two different particle concentrations. The governing equation of the hydraulic model treating three components of fluid resistances;electrode duct flow, check valve flow and piston gap flow, is achieved via the bond graph method. A prototype ER damper is then designed and manufactured on the basis of parameter analysis. The damping forces of the system are experimentally evaluated by changing the intensity of the electric field, the particle concentration and the electrode gap.

  • PDF

수평축 풍력발전 시스템용 복합재 회전날개의 피로수명 설계에 관한 연구 (A Study on Fatigue Life Design for Horizontal Axis Wind Turbine Composite Blade)

  • 공창덕;방조혁;정종철;강명훈;정석훈;류지윤;김기범
    • 한국추진공학회지
    • /
    • 제3권3호
    • /
    • pp.47-52
    • /
    • 1999
  • 피로시험은 구조설계에 있어서 필수적인 과정으로서, 구조물의 요구수명 만족여부를 판단하기 위해 수행된다. 본 연구에서는 750㎾급 수평축 풍력발전 시스템용 복합재 회전날개가 요구수명 20년이상 안전하게 운용되어질 수 있는지에 대한 검토를 수행하였다. tan Bond의 실험식과 S-N선형 손상 방법을 사용하여 요구 피로강도를 계산하였으며, 설계된 복합재 회전날개의 유한요소 해석 결과와 비교하기 위해 측정하중 스펙트럼과 Spera의 피로하중 실험식을 이용하여 회전날개에 적용시킬 피로하중을 계산하였다. 계산된 피로하중에 대한 유한요소 해석을 수행하여 검토한 결과, fan Bond의 실험식을 이용하여 예측한 최대 요구 피로강도보다 낮은 범위에 있음을 확인하였다.

  • PDF

反應性의 結合 Orbital 理論 (Bond Orbital Theory of Chemical Reactivity)

  • 양강;이태규
    • 대한화학회지
    • /
    • 제8권1호
    • /
    • pp.20-24
    • /
    • 1964
  • 종합 오비탈을 모형식으로 결합하여 분자 오비탈을 만드는 방법(linear combination of bond orbitals method, LCBO법)을 응용하여 할로겐화메탄($CH_nX_{4-n}$)과 이를 공변하는 원자(혹은 자유기)와의 추출반응(abstraction reaction $CH_nX_{4-n}\;+\;A\;{\to}\;CH_nX_{3-n}\;+\;XA$)에 대한 반응성을 연구하려는 것이 이 논문의 목적이다. 이 반응의 활성화에테르기 ${\eta}$를 계산하려고 다음과 같은 특정을 하였다. $CH_nX_{4-n}$분자가 활성화복합물로 변할때 그의 반응성 결합(reactive bond) C-X에 있는 두 전자는 완전히 이 분자의 타 ${\eta}전자계로부터 분리된다.이런 모델은 자미있는 직감적인 관념을 유인하게 되니 즉 반응성종합과 그의 주위에 있는 화학종합과의 상호작용에 의하여 ${\eta}$전자계의 반응성이 좌우된다는 것이다. 저자들의 이론적계산에 의하면 ${\eta}$는 다음식으로 표시된다. ${\varepsilon}={\zeta}+{\sum}_{i=1}^3{\eta}c-I,$ c-4 (1) Subscript C-i (i=1,2,3)는 C와 원자 i(i=H, Cl, Br, F,${\cdots}$)간의 화학결합을 표시하며 C-4 (4=(4=Cl, Br${\cdots}$) 는 반응성결합을 가르킨다. ${\zeta}$ξ는 상수한 바와 같이 완전분리상태에 있는 C-4종합과 공변원자 A간의 가상적 반응의 활성화에테르기이며 ${\eta}$C-i, C-4는 C-4와 그의 주위결합 C-i간의 상호작용에 의하여 안정화되는 에테르기를 표시한다. 결합강도와 양립하는 ${\eta}$치는 추출하여 (1)식에 대입하면 차식이 유도된다. ${\varepsilon}={\zeta}\;+\;N{\eta}c$-H, C-4 (2) N은 $CH_nX_{4-n}$분자중에 있는 C-4이상의 C-H 및 C-F결합들의 총수이다. 실험치의 를 N에 대하여 도시하면 $CH_nCo_{4-n}\;+\;H\;{\to}\;HCl\;+\;CH_nCl_{3-n},\;CH_nX_{4-n}\;+\;Na\;{\to}\;NaCl\;+\;CH_nCl_{3-n},\;CH_nX_{4-n} \;Na\;{\to}\;NaBr\;+\;CH_nCl_{3-n}$反應系들에 對하여 좋은 直線을 주니 (2)식이 實驗과 一致한다는 것이다

  • PDF

New emerging surface treatment of GFRP Hybrid bar for stronger durability of concrete structures

  • Park, Cheolwoo;Park, Younghwan;Kim, Seungwon;Ju, Minkwan
    • Smart Structures and Systems
    • /
    • 제17권4호
    • /
    • pp.593-610
    • /
    • 2016
  • In this study, an innovative and smart glass fiber-reinforced polymer (GFRP) hybrid bar was developed for stronger durability of concrete structures. As comparing with the conventional GFRP bar, the smart GFRP Hybrid bar can promise to enhance the modulus of elasticity so that it makes the cracking reduced than the case when the conventional GFRP bar is used. Besides, the GFRP Hybrid bar can effectively resist the corrosion of conventional steel bar by the GFRP outer surface on the steel bar. In order to verify the bond performance of the GFRP hybrid bar for structural reinforcement, uniaxial pull-out test was conducted. The variables were the bar diameter and the number of strands and pitch of the fiber ribs. Tensile tests showed a excellent increase in the modulus of elasticity, 152.1 GPa, as compared to that of the pure GFRP bar (50 GPa). The stress-strain curve was bi-linear, so that the ductile performance could be obtained. For the bond test, the entire GFRP hybrid bar test specimens failed in concrete splitting due to higher shear strength resulting in concrete crushing as a function of bar deformation. Investigation revealed that an increase in the number of strands of fiber ribs enhanced the bond strength, and the pitch guaranteed the bond strength of 19.1 mm diameter hybrid bar with 15.9 mm diameter of core section of deformed steel the ACI 440 1R-15 equation is regarded as more suitable for predicting the bond strength of GFRP hybrid bars, whereas the CSA S806-12 prediction is considered too conservative and is largely influenced by the bar diameter. For further study, various geometrical and material properties such as concrete cover, cross-sectional ratio, and surface treatment should be considered.

Aspects of size effect on discrete element modeling of normal strength concrete

  • Gyurko, Zoltan;Nemes, Rita
    • Computers and Concrete
    • /
    • 제28권5호
    • /
    • pp.521-532
    • /
    • 2021
  • Present paper focuses on the modeling of size effect on the compressive strength of normal concrete with the application of Discrete Element Method (DEM). Test specimens with different size and shape were cast and uniaxial compressive strength test was performed on each sample. Five different concrete mixes were used, all belonging to a different normal strength concrete class (C20/25, C30/37, C35/45, C45/55, and C50/60). The numerical simulations were carried out by using the PFC 5 software, which applies rigid spheres and contacts between them to model the material. DEM modeling of size effect could be advantageous because the development of micro-cracks in the material can be observed and the failure mode can be visualized. The series of experiments were repeated with the model after calibration. The relationship of the parallel bond strength of the contacts and the laboratory compressive strength test was analyzed by aiming to determine a relation between the compressive strength and the bond strength of different sized models. An equation was derived based on Bazant's size effect law to estimate the parallel bond strength of differently sized specimens. The parameters of the equation were optimized based on measurement data using nonlinear least-squares method with SSE (sum of squared errors) objective function. The laboratory test results showed a good agreement with the literature data (compressive strength is decreasing with the increase of the size of the specimen regardless of the shape). The derived estimation models showed strong correlation with the measurement data. The results indicated that the size effect is stronger on concretes with lower strength class due to the higher level of inhomogeneity of the material. It was observed that size effect is more significant on cube specimens than on cylinder samples, which can be caused by the side ratios of the specimens and the size of the purely compressed zone. A limit value for the minimum size of DE model for cubes and cylinder was determined, above which the size effect on compressive strength can be neglected within the investigated size range. The relationship of model size (particle number) and computational time was analyzed and a method to decrease the computational time (number of iterations) of material genesis is proposed.

Kinetic Studies on the Addition of Thiophenol to ${\alpha}$ N-Diphenylnitrone

  • Tae-Rin Kim;Kwang-Il Lee;Sang-Yong Pyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권3호
    • /
    • pp.301-303
    • /
    • 1991
  • The rate constants for the nucleophilic addition of thiophenol to $\alpha$, N-diphenylnitrone and it's derivatives (p-$OCH_3$, p-Cl, p-$NO_2$) were determined from pH 3.0 to 13.0 by UV spectrophotometry and rate equations which can be applied over a wide pH range were obtained. On the basis of rate equation, general base and substituent effect a plausible addition mechanism of thiophenol to ${\alpha}$, N-diphenylnitrone was proposed: At high pH, the addition of sulfide ion to carbon-nitrogen double bond was rate controlling, however, in acidic solution, reaction was proceeded by the addition of thiophenol molecule to carbon-nitrogen double bond after protonation at oxygen of ${\alpha}$, N-diphenylnitrone.

S-Phenyl-S-vinyl-N-p-tosylsulfilimine 유도체에 대한 Thioglycolic Acid의 친핵성 첨가반응에 관한 반응속도론적 연구 (Kinetic Studies on the Nucleophilic Addition of Thioglycolic Acid to S-Phenyl-S-vinyl-N-p-tosylsulfilimine Derivatives)

  • 김태린;한만소;편상용
    • 대한화학회지
    • /
    • 제40권10호
    • /
    • pp.663-669
    • /
    • 1996
  • Vinylsulfilimine(VSI) 유도체($p-OCH_3$, H, p-Cl 및 p-Br)에 대한 thioglycolic acid의 친핵성 첨가반응속도를 자외선 분광법으로 측정하여 넓은 pH 범위에서 적용될 수 있는 속도식을 구하였다. pH에 따른 속도상수의 변화, general base 및 치환기 효과 등을 바탕으로 반응 메카니즘을 제안하였다. 즉 pH3.0 이하에서는 sulfilimine의 질소에 양성자가 먼저 첨가된 다음 중성 thioglycolic acid 분자가 탄소 이중결합에 첨가되고, pH 3.0-9.0 영역에서 thioglycolic acid의 중성분자와 음이온의 첨가가 경쟁적으로 일어나며, pH 9.0 이상에서는 황화 음이온이 첨가되는 전형적인 Michael type의 반응이 진행됨을 알았다.

  • PDF

Damage and stiffness research on steel shape steel fiber reinforced concrete composite beams

  • Xu, Chao;Wu, Kai;Cao, Ping zhou;Lin, Shi qi;Xu, Teng fei
    • Computers and Concrete
    • /
    • 제24권6호
    • /
    • pp.513-525
    • /
    • 2019
  • In this work, an experimental research has been performed on Steel Fiber-Steel Reinforced Concrete (SFSRC)specimens subjected to four-point bending tests to evaluate the feasibility of mutual replacement of steel fibers and conventional reinforcement through studying failure modes, load-deflection curves, stiffness of characteristic points, stiffness degradation curves and damage analysis. The variables considered in this experiment included steel fiber volume percentage with and without conventional reinforcements (stirrups or steel fibers) with shear span depth ratios of S/D=2.5 and 3.5. Experimental results revealed that increasing the volume percentage of steel fiber decreased the creation and propagation of shear and bond cracks, just like shortening the stirrups spacing. Higher crack resistance and suturing ability of steel fiber can improve the stability of its bearing capacity. Both steel fibers and stirrups improved the stiffness and damage resistance of specimens where stirrups played an essential role and therefore, the influence of steel fibers was greatly weakened. Increasing S/D ratio also weakened the effect of steel fibers. An equation was derived to calculate the bending stiffness of SFSRC specimens, which was used to determine mid span deflection; the accuracy of the proposed equation was proved by comparing predicted and experimental results.

Simplified Design Equation of Lap Splice Length in Compression

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • International Journal of Concrete Structures and Materials
    • /
    • 제4권1호
    • /
    • pp.63-68
    • /
    • 2010
  • With the emergence of ultra-high strength of concrete, the compression lap splice has become an important area of interest. According to ACI 318-08, a compression splice can be longer than a tension splice when high-strength concrete is used. By reevaluating the test results of compression splices and performing regression analysis, a simplified design equation for splice length in compression was developed based on the basic form of design equations for development/splice lengths of deformed bars and hooks in tension. A simple linear relation between $l_s/d_b$ and $f_{sc}\sqrt{f'_c}$ was assumed, and yields good values for the correlation coefficient and the mean and the COV (coefficient of variation) of the ratios of tests to predictions of splice strengths in compression. By including the 5% fractile coefficient of 0.83, a design equation for splice length in compression was developed. The splice length calculated using the proposed equation has a reliability that is equivalent to other provisions for reinforcing bars.

RC 기둥의 겹침이음파괴 시 철근의 응력 산정 (Calculation of Rebar Stress at Splice Failure of RC Columns)

  • 조재열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.446-449
    • /
    • 2006
  • Several experimental investigations have been carried out to study the behavior of reinforced concrete columns with short lap splices. However, very few analytical models have been developed for the analysis of such columns subjected to earthquakes. As nonlinear analysis procedures become more common in practice (such as those outlined in the Guidelines for Seismic Rehabilitation of Buildings published by the Federal Emergency Management Agency in the United States), the need for an accurate and reliable representation of the nonlinear response of strength degrading systems becomes more important. In this study, an analytical model for estimating the complete response of reinforced concrete columns with short lap splices is presented. The model is based on local bond stress-slip relationships and is validated against independent experimental data from cyclic loading tests on reinforced concrete columns with typical construction details of the 1960s. In this paper a simple equation for calculating the bar stress at splice failure is presented. Use of the proposed equation resulted in excellent agreement between the measured and calculated strength at splice failure.

  • PDF