• Title/Summary/Keyword: Boltzmann constant

Search Result 19, Processing Time 0.02 seconds

CARS Spectra of HCI, N₂, and C₂H₂ in the Gas Phase

  • 백선종;김중희;박주연;이성열;김홍래
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.810-813
    • /
    • 1995
  • Coherent anti-Stokes Raman scattering (CARS) spectra of HCl, N2, and the ν1 fundamental of C2H2 have been measured in the gas phase. The measured spectra show rotational structures which originate from the Q-branch transitions. The spectra have successfully been simulated with proper selection rules, line positions, and relative intensities from room temperature Boltzmann population distributions. The vibration-rotation interaction constant α of HCl in the ground electronic state has been measured from the rotationally resolved CARS spectra which is α=0.3076 cm-1. Possibilities of optical pumping and of measuring state specific energy distributions of molecules are discussed.

Temporal Evolution and Ablation Mechanism of Laser-induced Graphite Plume at 355 nm

  • 최영구;임훙선;정광우
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1501-1505
    • /
    • 1999
  • Expansion dynamics of C$^{+}$ ions ejected from 355-nm laser ablation of graphite target in vacuum has been investigated by pulsed-field time-of-flight (TOF) mass spectrometry. A strong nonlinear dependence of the amount of desorbed C$^{+}$ ions on laser fluence is interpreted by the mechanism that C$^{+}$ ions are produced directly from the graphite via conversion of the multiphoton energy into thermal energy. The temporal evolution of C$^{+}$ ions was measured by varying the delay time of the ion repelling pulse with respect to the laser irradiation, which provides significant information on the ablated plume characterization. The TOF distributions of ablated ions showed a bimodal shape and could be fitted by shifted Maxwell-Boltzmann distributions. The velocity of the fast component increases with the delay time, whereas the slow component (< 500 m/s) exhibits a constant velocity. Also studied were the effects of the laser fluence on the energetics of C$^{+}$ ions.

Nonlinear free vibration analysis of moderately thick viscoelastic plates with various geometrical properties

  • Nasrin Jafari;Mojtaba Azhari
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.293-303
    • /
    • 2023
  • In this paper, geometrically nonlinear free vibration analysis of Mindlin viscoelastic plates with various geometrical and material properties is studied based on the Von-Karman assumptions. A novel solution is proposed in which the nonlinear frequencies of time-dependent plates are predicted according to the nonlinear frequencies of plates not dependent on time. This method greatly reduces the cost of calculations. The viscoelastic properties obey the Boltzmann integral law with constant bulk modulus. The SHPC meshfree method is employed for spatial discretization. The Laplace transformation is used to convert equations from the time domain to the Laplace domain and vice versa. Solving the nonlinear complex eigenvalue problem in the Laplace-Carson domain numerically, the nonlinear frequencies, the nonlinear viscous damping frequencies, and the nonlinear damping ratios are verified and calculated for rectangular, skew, trapezoidal and circular plates with different boundary conditions and different material properties.

Conformational changes of short, discrete Rouse chain during creep and recovery processes

  • Watanabe, Hiroshi;Inoue, Tadashi
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.2
    • /
    • pp.91-99
    • /
    • 2004
  • For the Rouse chain composed of infinite number of beads (continuous limit), conformational changes during the creep and creep recovery processes was recently analyzed to reveal the interplay among all Rouse eigenmodes under the constant stress condition (Watanabe and Inoue, Rheol. Acta, 2004). For completeness of the analysis of the Rouse model, this paper analyzes the conformational changes of the discrete Rouse chain having a finite number of beads (N = 3 and 4). The analysis demonstrates that the chain of finite N exhibits the affine deformation on imposition/removal of the stress and this deformation gives the instantaneous component of the recoverable compliance, $J_{R}$(0) = 1/(N-l)v $k_{B}$T with v and $k_{B}$ being the chain number density and Boltzmann constant, respectively. (This component vanishes for N\longrightarrow$\infty$.) For N = 2, it is known that the chain has only one internal eigenmode so that the affinely deformed conformation at the onset of the creep process does not change with time t and $J_{R}$(t) coincides with $J_{R}$(0) at any t (no transient increase of $J_{R}$(t)). However, for N$\geq$3, the chain has N-l eigenmodes (N-l$\geq$2), and this coincidence vanishes. For this case, the chain conformation changes with t to the non-affine conformation under steady flow, and this change is governed by the interplay of the Rouse eigenmodes (under the constant stress condition). This conformational change gives the non-instantaneous increase of $J_{R}$(t) with t, as also noted in the continuous limit (N\longrightarrow$\infty$).X>).TEX>).X>).

The Electronic and Thermoelectric Properties of Si1-xVx Alloys from First Principles

  • Ramanathan, Amall Ahmed;Khalifeh, Jamil Mahmoud
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.105-109
    • /
    • 2017
  • The effect of temperature and vanadium metal concentration on the electronic and thermoelectric properties of Si in the diamond cubic structure has been investigated using a combination of density functional theory simulations and the semi classical Boltzmann's theory. The BotzTrap code within the constant relaxation time approximation has been used to obtain the Seebeck coefficient and other transport properties of interest for alloys of the structure $Si_{1-x}V_x$, where x is 0, 0.125, 0.25, 0.375, and 0.5. The thermoelectric properties have been extracted for a temperature range of 300 K to 1,000 K. The general trend with V atom substitution for Si causes the Seeback coefficient to increase and the thermal conductivity to decrease for the various alloys. The optimum values are for $Si_5V_3$ and $Si_4V_4$ alloys for charge carrier concentrations of $10^{21}cm^{-3}$ in the mid temperature range of 500~800 K. This is a very desirable effect for a promising thermoelectric and the figure of merit ZT approaches 0.2 at 600 K for the p-type $Si_5V_3$ alloy.

Strong Correlation Effect by the Rare Earth Substitution on Thermoelectric Material Bi2Te3 ; in GGA+U Approach

  • Quang, Tran Van;Kim, Miyoung
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.05a
    • /
    • pp.19-20
    • /
    • 2013
  • Thermoelectic properties of the typical thermoelectric host materials, the tellurides and selenides, are known to be noticeably changed by their volume change due to the strain [1]. In the bismuth telluride ($Bi_2Te_3$) crystal, a substitution of rare-earth element by replacing one of the Bi atoms may cause the change of the lattice parameters while remaining the rhombohedral structure of the host material. Using the first-principles approach by the precise full potential linearized augmented plane wave (FLAPW) method [2], we investigated the Ce substitution effect on the thermoelectric transport coefficients for the bismuth telluride, employing Boltzmann's equation in a constant relaxation-time approach fed with the FLAPW wave-functions within the rigid band approximation. Depending on the real process of re-arrangement of atoms in the cell to reach the equilibrium state, $CeBiTe_3$ was found to manifest a metal or a narrow bandgap semiconductor. This feature along with the strong correlation effect originated by the 4f states of Ce affect significantly on the thermoelectric properties. We showed that the position of the strongly localized f-states in energy scale (Fig. 1, f-states are shaded) was found to alter critically the transport properties in this material suggesting an opportunity to improve the thermoelectric efficiency by tuning the external strain which may changing the location of the f-sates.

  • PDF

Quasi-static responses of time-dependent sandwich plates with viscoelastic honeycomb cores

  • Nasrin Jafari;Mojtaba Azhari
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.589-598
    • /
    • 2023
  • This article addresses the quasi-static analysis of time-dependent honeycomb sandwich plates with various geometrical properties based on the bending analysis of elastic honeycomb sandwich plates employing a time function with three unknown coefficients. The novel point of the developed method is that the responses of viscoelastic honeycomb sandwich plates under static transversal loads are clearly formulated in the space and time domains with very low computational costs. The mechanical properties of the sandwich plates are supposed to be elastic for the faces and viscoelastic honeycomb cells for the core. The Boltzmann superposition integral with the constant bulk modulus is used for modeling the viscoelastic material. The shear effect is expressed using the first-order shear deformation theory. The displacement field is predicted by the product of a determinate geometrical function and an indeterminate time function. The simple HP cloud mesh-free method is utilized for discretizing the equations in the space domain. Two coefficients of the time function are extracted by answering the equilibrium equation at two asymptotic times. And the last coefficient is easily determined by solving the first-order linear equation. Numerical results are presented to consider the effects of geometrical properties on the displacement history of viscoelastic honeycomb sandwich plates.

Shape Characteristics of Exhaust Plume of Dual-Stage Plasma Thruster using Direct-Current Micro-Hollow Cathode Discharge (직류 마이크로 할로우 음극 방전을 이용한 이단 마이크로 플라즈마 추력기의 배기 플룸의 형상 특성)

  • Ho, Thi Thanh Trang;Shin, Jichul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.54-62
    • /
    • 2016
  • Micro plasma thruster (${\mu}PT$) was studied experimentally with a dual-stage micro-hollow cathode discharge (MHCD) plasma. Electrostatic-like acceleration exhibiting more directional and elongated exhaust plume was achieved by a dual layer MHCD at the total input power less than 10 W with argon flow rate of 40 sccm. V-I characteristic indicated that there was an optimal regime for dual-stage operation where the acceleration voltage across the second stage remained constant. Estimated exhaust plume length showed a similar trend to the analytic estimate of exhaust velocity which scales with an acceleration voltage. ${\mu}PT$ with multiple holes exhibited similar performance with single-hole thruster indicating that higher power loading is possible owing to decreased power through each hole. Boltzmann plot of atomic argon spectral lines showed average electron excitation temperature of about 2.6 eV (~30,170 K) in the exhaust plume.

Estimation of Daily Net Radiation from Synoptic Meteorological Data (종관기상자료에 의한 순폭사량 추정)

  • 이변우;김병찬;명을재
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.3
    • /
    • pp.204-208
    • /
    • 1991
  • Five models for net radiation estimation reported by Linacre(1968), Berljand(1956), Nakayama et al. (1983), Chang (1970) and Doorenbos et al. (1977) were tested for the adaptability to Korea. A new model with effective longwave radiation term parameterized by air temperature, solar radiation and vapor pressure was formulated and tested for its accuracy. Above five models with original parameter values showed large absolute mean deviations ranging from 0.86 to 1.64 MJ/$m^2$/day. The parameters of the above five models were reestimated by using net radiation and meteorological elements measured in Suwon, Korea. These five models with new parameter values showed absolute mean deviations ranging from 0.74 to 0.88 MJ/$m^2$/day. The following model was newly formulated: Rn=(1- $\alpha$) Rs- $\sigma$ $T_{k}$$^{4}$ (0.0103 Exp (0 .0731 Rs) -0.0475 (equation omitted) +0 .2478) ($R^2$=0.997, n=63) where $\alpha$ =albedo, $\sigma$=Stefan-Boltzmann constant, Rs=solar radiation in MJ/$m^2$/day, Tk =air temperature in Kelvin and $e_{a}$=vapor pressure in mb. This model revealed 0.4988 MJ/$m^2$/day in absolute mean deviation when applied to an independent set of meteorological data.a.a.

  • PDF