• Title/Summary/Keyword: Boltzmann Equilibrium

Search Result 52, Processing Time 0.017 seconds

Measurement of EUV Emission and its Plasma Parameters Generated from the Coaxial Plasma Focus of Mather and Hypocycloidal Pinched Electrodes

  • Lee, Sung-Hee;Lee, Kyung-Ae;Hong, Young-June;Uhm, Han-Sup;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.332-332
    • /
    • 2011
  • The extreme ultraviolet (EUV) radiation, whose wavelength is from 120 nm down to 10 nm, and the energy from 10 eV up to 124 eV, is widely utilized such as in photoelectron spectroscopy, solar imaging, especially in lithography and soft x-ray microscopy. In this study, we have investigated the plasma diagnostics as well as the debris characteristics between the two types of dense plasma focusing devices with coaxial electrodes of Mather and hypocycloidal pinch (HCP), respectively. The EUV emission intensity, electron temperature and plasma density have been investigated in these cylindrical focused plasma along with the debris characteristics. An input voltage of 5 kV has been applied to the capacitor bank of 1.53 uF and the diode chamber has been filled with Ar gas at pressure ranged from 1 mTorr and 180 mTorr. The inner surface of the cathode was covered by polyacetal insulator. The central anode electrode has been made of tin. The wavelength of the EUV emission has been measured to be in the range of 6~16 nm by a photo-detector (AXUV-100 Zr/C, IRD). The visible emission has also been measured by the spectrometer with the wavelength range of 200~1,100 nm. The electron temperature and plasma density have been measured by the Boltzmann plot and Stark broadening methods, respectively, under the assumption of local thermodynamic equilibrium (LTE).

  • PDF

Electronic properties of graphene nanoribbons with Stone-Wales defects using the tight-binding method

  • M.W. Chuan;S.Z. Lok;A. Hamzah;N.E. Alias;S. Mohamed Sultan;C.S. Lim;M.L.P Tan
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • Driven by the scaling down of transistor node technology, graphene became of interest to many researchers following the success of its fabrication as graphene nanoribbons (GNRs). However, during the fabrication of GNRs, it is not uncommon to have defects within the GNR structures. Scaling down node technology also changes the modelling approach from the classical Boltzmann transport equation to the quantum transport theory because the quantum confinement effects become significant at sub-10 nanometer dimensions. The aim of this study is to examine the effect of Stone-Wales defects on the electronic properties of GNRs using a tight-binding model, based on Non-Equilibrium Green's Function (NEGF) via numeric computation methods using MATLAB. Armchair and zigzag edge defects are also implemented in the GNR structures to mimic the practical fabrication process. Electronic properties of pristine and defected GNRs of various lengths and widths were computed, including their band structure and density of states (DOS). The results show that Stone-Wales defects cause fluctuation in the band structure and increase the bandgap values for both armchair GNRs (AGNRs) and zigzag GNRs (ZGNRs) at every simulated width. In addition, Stone-Wales defects reduce the numerical computation DOS for both AGNRs and ZGNRs. However, when the lengths of the structures increase with fixed widths, the effect of the Stone-Wales defects become less significant.