• 제목/요약/키워드: Bolt Joints

검색결과 144건 처리시간 0.026초

금속-복합재 하이브리드 체결부의 강도 특성 연구 (A Study on the Strength of Metal-Composite Hybrid Joints)

  • 정재우;송민환;권진회;최진호
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.94-97
    • /
    • 2005
  • The strength of aluminum 7075 and carbon composite hybrid joints was studied for adhesive, bolt, and the adhesive-bolt combined joints. Several hybrid joint specimens were tested to get the failure load and modes for three types of the joints. Adhesive Cytec EA9394S was used for aluminum and carbon bonding. Failure load of the adhesive-bolt combined joint was 94 % of the sum of the failure load of the separately bonded and bolted joints. Hybrid joint also showed more stable failure behavior than the simple adhesive or bolted joint.

  • PDF

Corroded and loosened bolt detection of steel bolted joints based on improved you only look once network and line segment detector

  • Youhao Ni;Jianxiao Mao;Hao Wang;Yuguang Fu;Zhuo Xi
    • Smart Structures and Systems
    • /
    • 제32권1호
    • /
    • pp.23-35
    • /
    • 2023
  • Steel bolted joint is an important part of steel structure, and its damage directly affects the bearing capacity and durability of steel structure. Currently, the existing research mainly focuses on the identification of corroded bolts and corroded bolts respectively, and there are few studies on multiple states. A detection framework of corroded and loosened bolts is proposed in this study, and the innovations can be summarized as follows: (i) Vision Transformer (ViT) is introduced to replace the third and fourth C3 module of you-only-look-once version 5s (YOLOv5s) algorithm, which increases the attention weights of feature channels and the feature extraction capability. (ii) Three states of the steel bolts are considered, including corroded bolt, bolt missing and clean bolt. (iii) Line segment detector (LSD) is introduced for bolt rotation angle calculation, which realizes bolt looseness detection. The improved YOLOv5s model was validated on the dataset, and the mean average precision (mAP) was increased from 0.902 to 0.952. In terms of a lab-scale joint, the performance of the LSD algorithm and the Hough transform was compared from different perspective angles. The error value of bolt loosening angle of the LSD algorithm is controlled within 1.09%, less than 8.91% of the Hough transform. Furthermore, the proposed framework was applied to fullscale joints of a steel bridge in China. Synthetic images of loosened bolts were successfully identified and the multiple states were well detected. Therefore, the proposed framework can be alternative of monitoring steel bolted joints for management department.

판 두께와 볼트 크기를 고려한 고장력 볼트 이음부의 극한 거동 (Ultimate Behavior of High-Tension Bolted Joints Considering Plate Thickness and Bolt Size)

  • 김성보;최종경;허인성
    • 한국전산구조공학회논문집
    • /
    • 제21권5호
    • /
    • pp.515-524
    • /
    • 2008
  • 본 연구에서는 판 두께와 볼트 크기에 따른 고장력 볼트 마찰이음부의 극한 거동을 비선형 유한 요소 해석 및 실험을 통하여 분석하였다. 볼트의 크기 및 모재의 두께가 고장력 볼트 마찰이음부에 끼치는 영향을 미끄러짐 하중, 볼트의 변형 및 파괴하중과의 관계와 함께 파악하였다. M20, M22, M24의 세가지 볼트와 모재의 두께가 12mm, 16mm, 20mm, 30mm, 40mm인 경우에 대하여 압축력을 받는 고장력 볼트 이음부의 극한 거동을 고찰하였다. 이음부의 힘-변위 관계 및 외력-변형도 관계를 실험적으로 도출하였으며 범용 유한요소해석 프로그램인 ABAQYS를 사용한 수치해석 결과와 비교, 분석하였다.

Variable amplitude fatigue test of M30 high-strength bolt in bolt-sphere joint grid structures

  • Qiu, Bin;Lei, Honggang;Yang, Xu;Zhou, Zichun;Wang, Guoqing
    • Steel and Composite Structures
    • /
    • 제33권3호
    • /
    • pp.433-444
    • /
    • 2019
  • Fatigue failure of a grid structure using bolt-sphere joints is liable to occur in a high-strength bolt due to the alternating and reciprocal actions of a suspension crane. In this study, variable amplitude fatigue tests were carried out on 20 40 Cr steel alloy M30 high-strength bolts using an MTS fatigue testing machine, and four cyclic stress amplitude loading patterns, Low-High, High-Low, Low-High-Low, and High-Low-High, were tested. The scanning electron microscope images of bolt fatigue failure due to variable amplitude stress were obtained, and the fractographic analysis of fatigue fractures was performed to investigate the fatigue failure mechanisms. Based on the available data from the constant amplitude fatigue tests, the variable amplitude fatigue life of an M30 high-strength bolt in a bolt-sphere joint was estimated using both Miner's rule and the Corten-Dolan model. Since both cumulative damage models gave similar predictions, Miner's rule is suggested for estimating the variable-amplitude fatigue life of M30 high-strength bolts in a grid structure with bolt-sphere joints; the S-N fatigue curve of the M30 high-strength bolts under variable amplitude loading was derived using equivalent stress amplitude as a design parameter.

고장력볼트 T-인장이음의 정적내력에 관한 실험적 연구 (An Experimental Study on the Static Load Capacity of T-Type Tension Joints with High Tension Bolt)

  • 이승용;최준혁;김경태
    • 한국강구조학회 논문집
    • /
    • 제27권1호
    • /
    • pp.53-61
    • /
    • 2015
  • 인장이음은 고장력 볼트의 체결력과 모재 그리고 고장력 볼트의 내력을 직접적으로 활용하고, 볼트구멍의 가공수나 체결개소의 감소, 피로저항성 등에 있어 유리하며 때문에 역학적으로 매우 효율적인 연결이다. 이러한 인장이음은 교량의 거더와 가로보의 이음, 주탑의 수평이음, 보-기둥 연결부, 바닥판 단부 2차부재 연결부, 브라켓 등에 적용될 수 있다. 본 연구에서는 인장이음의 역학적 거동을 파악하기 위해서 T-인장이음에 대한 정적실험을 수행하였다. 시험변수는 고장력 볼트의 직경, 플렌지 두께 및 체결력 감소이며, 인장이음의 파괴양상과 내력, 플랜지 두께와 고장력 볼트의 직경의 영향, 체결력의 영향에 대해 분석하였다.

굴절형 신축이음장치의 피로내구성 평가 (Fatigue Durability Evaluation of Refraction Expansion Joints)

  • 나준수;이타;한의석;성원규;이종석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권6호
    • /
    • pp.10-15
    • /
    • 2017
  • 굴절형 신축이음장치는 신축이음장치의 문제점인 충격, 소음, 교체성, 교축직각방향 변위, 단차발생등을 보완하여 새롭게 개발되었다. 굴절형 신축이음장치는 주행면이 연속화 되어 충격이 작고 소음이 작은 것이 특징이다. 굴절형 신축이음장치의 거동 방식은 링크의 회전으로 신축 거동을 수행한다. 링크의 회전 거동 시 거동의 중심 축이되는 것은 볼트이다. 그러므로 굴절형 신축이음 장치는 볼트의 내구성이 매우 중요하다고 할 수 있다. 하지만 굴절형 신축이음장치의 볼트 내구성은 이론적, 실험적 검증이 부족한 실정이다. 본 논문에서는 볼트의 피로 내구성을 검증 하기 위해 신축량 300 mm 굴절형 신축이음장치 시험 시편을 제작 하였다. 제작된 시험 볼트 내부에는 볼트 전용 스트레인게이지를 설치하였다. 시험 방법은 KS F 4425를 준용 하여 시험 하였다. 200만회 피로 반복 시험을 통해 굴절형 신축이음장치 내부에 조립된 볼트의 피로 내구성을 확인 하였다.

Elastoplastic FEM analysis of earthquake response for the field-bolt joints of a tower-crane mast

  • Ushio, Yoshitaka;Saruwatari, Tomoharu;Nagano, Yasuyuki
    • Advances in Computational Design
    • /
    • 제4권1호
    • /
    • pp.53-72
    • /
    • 2019
  • Safety measures for tower cranes are extremely important among the seismic countermeasures at high-rise building construction sites. In particular, the collapse of a tower crane from a high position is a very serious catastrophe. An example of such an accident due to an earthquake is the case of the Taipei 101 Building (the author was the project director), which occurred on March 31, 2002. Failure of the bolted joints of the tower-crane mast was the direct cause of the collapse. Therefore, it is necessary to design for this eventuality and to take the necessary measures on construction sites. This can only be done by understanding the precise dynamic behavior of mast joints during an earthquake. Consequently, we created a new hybrid-element model (using beam, shell, and solid elements) that not only expressed the detailed behavior of the site joints of a tower-crane mast during an earthquake but also suppressed any increase in the total calculation time and revealed its behavior through computer simulations. Using the proposed structural model and simulation method, effective information for designing safe joints during earthquakes can be provided by considering workability (control of the bolt pretension axial force and other factors) and less construction cost. Notably, this analysis showed that the joint behavior of the initial pretension axial force of a bolt is considerably reduced after the axial force of the bolt exceeds the yield strength. A maximum decrease of 50% in the initial pretension axial force under the El Centro N-S Wave ($v_{max}=100cm/s$) was observed. Furthermore, this method can be applied to analyze the seismic responses of general temporary structures in construction sites.

볼트 체결부를 갖는 구조물의 유한요소모델링에 관한 연구 (A Study on Finite Element Modeling of the Structure with Bolted Joints)

  • 윤주철;강범수;김정
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.205-212
    • /
    • 2003
  • In this study, in order to investigate a modeling technique of the structure with bolted joints, four kinds of finite element model are introduced; a solid bolt model, a coupled bolt model, a spider bolt model, and no bolt model. All proposed models take account on prestrained effect and contact behavior of flanges to be joined. Among these models, a solid bolt model, which is modeled by using a 3-D solid element and a surface-to-surface contact element between the head/nut and the flange interfaces, has the best accurate responses compared with the experimental results. In addition, coupled bolt model, which couples the degree of freedom between the head/nut and the flange, shows the best effectiveness and usefulness in view of computational time and memory usage. Finally, the bolt model proposed here is adopted for structural analysis of a large diesel engine of a ship consisting of several parts which is connected by long stay bolts.

볼트식 각관형식으로 이음된 PHC 말뚝의 거동 (Behavior of PHC Pile Connected by Bolted Rectangular Steel Tubular)

  • 윤원섭
    • 한국산업융합학회 논문집
    • /
    • 제22권6호
    • /
    • pp.615-626
    • /
    • 2019
  • In this study, the applicability of PHC pile jointing method using rectangular steel tubular was studied. PHC pile joints are welded and bolt assembly. The bolt assembly method is a method that improves the various problems of welded joints. Numerical analysis and tests were conducted to analyze the applicability of the PHC pile jointing method using a rectangular steel tubular. The tests were carried out to test the material properties of the rectangular steel tubular material and the bending test of the pile joints. The numerical analysis was interpreted in the same conditons as the tests conditions. As a result, the material strength of each rectangular steel tubular could be used as a joint material. In the bending test, it was evaluated as a sTable material above the allowable stress of piles. In the numerical analysis results under the same conditions as the tests, it was possible to apply the pile joint material without exceeding the allowable stress of the material.

Numerical analysis on tensile properties of composite hybrid bonded/bolted joints with flanging

  • Cheng, Xiaoquan;Zhang, Jie;Zhang, Jikui;Liu, Peng;Cheng, Yujia;Xu, Yahong
    • Steel and Composite Structures
    • /
    • 제26권3호
    • /
    • pp.265-272
    • /
    • 2018
  • A detailed study was carried out on the tensile properties of the single-lap joint of a steel panel bolted/bonded to a composite laminate with a flanging. Finite element model (FEM) was established to predict the strength and to analyze the damage propagation of the hybrid joints by ABAQUS/Standard, which especially adopted cohesive elements to simulate the interface between the laminate and adhesive. The strength and failure mode predicted by FEM were in good agreement with the experimental results. In addition, three influence factors including adhesive thickness, bolt preload and bolt-hole clearance were studied. The results show that the three parameters have effect on the first drop load of the load-displacement curve, but the effect of bolt-hole clearance is the largest. The bolt-hole clearance should be avoided for hybrid joints.