• Title/Summary/Keyword: Boiling Point

Search Result 329, Processing Time 0.037 seconds

A study on the transient cooling process of a vertical-high temperature tube in an annular flow channel (환상유로에 있어서 수직고온관의 과도적 냉각과정에 관한 연구)

  • 정대인;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.156-164
    • /
    • 1986
  • In the case of boiling on high temperature wall, vapor film covers fully or parcially the surface. This phenomenon, film boiling or transition boiling, is very important in the surface heat treatment of metal, design of cryogenic heat exchanger and emergency cooling of nuclear reactor. Mainly supposed hydraulic-thermal accidents in nuclear reactor are LCCA (Loss of Coolant Accident) and PCM (Power-Cooling Mismatch). Recently, world-wide studies on reflooding of high temperature rod bundles after the occurrence of the above accidents focus attention on wall temperature history and required time in transient cooling process, wall superheat at rewet point, heat flux-wall superheat relationship beyond the transition boiling region, and two-phase flow state near the surface. It is considered that the further systematical study in this field will be in need in spite of the previous results in ref. (2), (3), (4). The paper is the study about the fast transient cooling process following the wall temperature excursion under the CHF (Critical Heat Flux) condition in a forced convective subcooled boiling system. The test section is a vertically arranged concentric annulus of 800 mm long and 10 mm hydraulic diameter. The inner tube, SUS 304 of 400 mm long, 8 mm I.D, and 7 mm O.D., is heated uniformly by the low voltage AC power. The wall temperature measurements were performed at the axial distance from the inlet of the heating tube, z=390 mm. 6 chromel- alumel thermocouples of 76 .mu.m were press fitted to the inner surface of the heating tube periphery. To investigate the heat transfer characteristics during the fast transient cooling process, the outer surface (fluid side) temperature and the surface heat flux are computed from the measured inner surface temperature history by means of a numerical method for inverse problems of transient heat conduction. Present cooling (boiling) curve is sufficiently compared with the previous results.

  • PDF

Experimental investigation of two-phase flow and wall heat transfer during reflood of single rod heater (단일 가열봉의 재관수 시 2상유동 및 벽면 열전달에 관한 실험적 연구)

  • Park, Youngjae;Kim, Hyungdae
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.23-34
    • /
    • 2020
  • Two-phase flow and heat transfer characteristics during the reflood phase of a single heated rod in the KHU reflood experimental facility were examined. Two-phase flow behavior during the reflooding experiment was carefully visualized along with transient temperature measurement at a point inside the heated rod. By numerically solving one-dimensional inverse heat conduction equation using the measured temperature data, time-resolved wall heat flux and temperature histories at the interface of the heated rod and coolant were obtained. Once water coolant was injected into the test section from the bottom to reflood the heated rod of >700℃, vast vapor bubbles and droplets were generated near the reflood front and dispersed flow film boiling consisted of continuous vapor flow and tiny liquid droplets appeared in the upper part. Following the dispersed flow film boiling, inverted annular/slug/churn flow film boiling regimes were sequentially observed and the wall temperature gradually decreased. When so-called minimum film boiling temperature reached, the stable vapor film between the heated rod and coolant was suddenly collapsed, resulting in the quenching transition from film boiling into nucleate boiling. The moving speed of the quench front measured in the present study showed a good agreement with prediction by a correlation in literature. The obtained results revealed that typical two-phase flow and heat transfer behaviors during the reflood phase of overheated fuel rods in light water nuclear reactors are well reproduced in the KHU facility. Thus, the verified reflood experimental facility can be used to explore the effects of other affecting parameters, such as CRUD, on the reflood heat transfer behaviors in practical nuclear reactors.

A Study on Evaporative Characteristics of Multi-component Mixed Fuels Using Mie Scattered Light and Shadowgraph Images (Mie 산란광법 및 Shadowgraph법을 이용한 다성분 혼합연료의 증발특성연구)

  • Yoon, Jun-Kyu;Myong, Kwang-Jae;Jiro Senda;Fujimoto Hajime;Cha, Kyung-Ok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.682-691
    • /
    • 2006
  • This study was conducted to assess the effect of mixed fuel composition and mass fraction on spray inner structure in evaporating transient spray under the various ambient conditions. Spray structure and spatial distribution of liquid phase concentration are investigated using a thin laser sheet illumination technique on the multi-component mixed fuels. A pulsed Ar+ laser was used as a light source. The experiments were conducted in a constant volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector. Used fuel contain $i-octane(C_8H_{18}),\;n-dodecane(C_{12}H_{26})$ and $n-hexadecane(C_{16}H_{34})$ that are selected as low-, middle- and high-boiling point fuel, respectively. Experimental conditions are 25Mpa, 42MPa, 72MPa and 112MPa in injection pressure, $5kg/m^3,\;15kg/m^3\;and\;20kg/m^3$ in ambient gas density, 400K, 500K, 600K and 700K in ambient gas temperature, 300K and 368K in fuel temperature, and different fuel mass fraction. Experimental results indicate that the more high-boiling point component, the longer the liquid phase it were closely related to fuel physical properties, but injection pressure had no effect on. And there was a high correlation between the liquid phase length and boiling temperature at 75% distillation point.

Isobaric Vapor-Liquid Equilibrium of Toluene and Cresol Systems (톨루엔-크레졸의 정압 기-액 평형)

  • Kang, Dong-Yuk;Jang, Hoi-Gu;Han, Chang-Nam;Rho, Seon-Gyun;Cho, Dong Lyun;Kang, Choon-Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.755-761
    • /
    • 2009
  • To a first approximation, phase behavior of a system becomes increasingly skew in proportion to the boiling point difference of system-forming constituents. Therefore, phase behavior data of a system of a large boiling point difference are to be experimentally measured for thorough understanding of the thermodynamic characteristics of such system. In this work, isobaric vapor-liquid equilibrium of a mixture consisting of toluene and cresol, which shows a large boiling point difference of nearly $100^{\circ}C$ and is consequently expected to be considerably nonideal, was measured by using a recirculating equilibrium cell at various subatmospheric pressures ranging from 10 kPa to 60 kPa. The measured VLE data were correlated with NRTL and UNIQUAC models in a satisfactory manner and the accompanying thermodynamic consistency test represented soundness of the measurements. In addition, the excess molar volume of the mixture was also measured with a vibrating densitometer and correlated with a Redlich-Kister polynomial. A negative excess volume prevailed over the whole concentration range, which indicates a favorable attraction between toluene and cresol isomers and results in an extensive miscibility.

QSPR model for the boiling point of diverse organic compounds with applicability domain (다양한 유기화합물의 비등점 예측을 위한 QSPR 모델 및 이의 적용구역)

  • Shin, Seong Eun;Cha, Ji Young;Kim, Kwang-Yon;No, Kyoung Tai
    • Analytical Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.270-277
    • /
    • 2015
  • Boiling point (BP) is one of the most fundamental physicochemical properties of organic compounds to characterize and identify the thermal characteristics of target compounds. Previously developed QSPR equations, however, still had some limitation for the specific compounds, like high-energy molecules, mainly because of the lack of experimental data and less coverage. A large BP dataset of 5,923 solid organic compounds was finally secured in this study, after dedicated pre-filtration of experimental data from different sources, mostly consisting of compounds not only from common organic molecules but also from some specially used molecules, and those dataset was used to build the new BP prediction model. Various machine learning methods were performed for newly collected data based on meaningful 2D descriptor set. Results of combined check showed acceptable validity and robustness of our models, and consensus approaches of each model were also performed. Applicability domain of BP prediction model was shown based on descriptor of training set.

Study on the Spray Control of Mixed Fuel Using Flash Boiling (감압비등을 이용한 혼합연료의 분무제어에 관한 연구)

  • Myong, Kwang-Jae;Yoon, Jun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.1005-1013
    • /
    • 2010
  • This study was conducted to assess the spray control of flash boiling with mixed fuel in consideration of HCCI (Homogeneous Charge Compression Ignition) engine condition. Mixed fuel existing in two phase regions can control the process of mixture formation under low temperature and density by using the spray resulting from flash boiling which is able to induce rapid evaporation of fuel spray as well as the evaporation of high boiling point component. Because HCCI engine injects the fuel early under ambient conditions, it can facilitate the chemical control of ignition combustion and physical control such as breakup and atomization of liquid fuel by flash boiling of mixed fuel which consists of highly ignitable light oil and highly volatile gasoline. This study was conducted by performing video processing after selected composition and molar fraction of the mixed fuel as major parameters and photographed Schlieren image and Mie scattered light corresponding to the flash boiling phenomenon of the fuel spray that was injected inside a constant volume vessel. It was found that flash boiling causes significant changes in the spray structure under relatively low temperature and density. Thus, we analyzed that the flash boiling spray can be used for HCCI combustion by controlling the mixture formation at the early fuel injection timing.

Enhance Potential Stability of Organic Electrolyte in EDLC by Using Co-solvent and Its electrochemical properties. (전기 이중층 커패시터 적용을 목적으로 한 공용매상 전해액과 전기화학적 특성)

  • Lee, Hyeon-Seok;Yuk, Yeong-Jae;Kim, Han-Ju;Park, Su-Gil
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.164-164
    • /
    • 2014
  • Characteristics of electrolyte are those; electrical stability, ion conductivity, viscosity, high temperature work, cell application. Theoretically, GBL has high oxidation voltage. Also, boiling point of GBL is $206^{\circ}C$ and flash point is over $280^{\circ}C$.

  • PDF

The Effect of NaCI Treatment on the Freezing Tolerance and Protein Patterns of Carrot Callus Suspension Culture

  • Moon, Soon-Ok;Park, Sook-Hee;Cho, Bong-Heuy
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.21-25
    • /
    • 1997
  • The growth. freezing resistance and electrophoretic protein patterns of carrot callus cultures were investigated following treatment with NaCl for various' intervals at 20$^{\circ}C$. Following 7 day exposure to 250 mM NaCl. freezing tolerance increased, which was measured by 2.3.5-triphenyl tetrazolium chloride (TTC) assay and fresh weight was reduced compared to control cells. Changes of electrophoretic patterns of total and boiling stable proteins were investigated using one or two dimensional gel system. Several proteins with molecular weight of 43 and 21 kDa increased by NaCl treatment. The most prominent change was detected in 21 kDa protein. The steady state level of this protein increased in NaCl treated cells, but decreased in control cells. Twenty one kDa protein was detected only in the NaCl treated cell when boiling stable protein was analyzed. The isoelectric point of 21 kDa protein was identified as 5.7. The timing of increase of 21 kDa protein was correlated to freezing resistance which implied the role of this protein in the induction of freezing resistance of the cell.

  • PDF

Study on Film Boiling Heat Transfer of Spray Cooling in Dilute Spray Region (희박 분무영역에서의 분무냉각 막 비등 열전달에 관한 연구)

  • Kim Yeung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.279-286
    • /
    • 2005
  • This study presents experimental results on the heat transfer coefficients in the film boiling region of spray cooling for actual metallurgical process. In this study, the heat flux distributions of a two dimensional dilute spray impinging on a hot plate were experimentally investigated. A stainless steel block was cooled down from intial temperature of about $800^{\circ}C$ by twin fluid (air-water) flat spray. It was found from the experimental results that the heat transfer area was classified into the stagnation region and wall-flow region. In the stagnation region, the experimental data of local heat transfer coefficient was closely correlated with the local droplet-flow-rate supplied from the spray nozzle directly. Thus, the local heat transfer coefficients are in good agreement with the predicted values from the correlations proposed by our previous study. In wall-flow region, however, remarkable differences are observed between experimental data and predicted values because the number of rebound droplets increase with increasing the distance from the stagnation point.