• Title/Summary/Keyword: Boiling Phenomenon

Search Result 70, Processing Time 0.028 seconds

CRITICAL HEAT FLUX ENHANCEMENT IN FLOW BOILING OF Al2O3 AND SiC NANOFLUIDS UNDER LOW PRESSURE AND LOW FLOW CONDITIONS

  • Lee, Seung-Won;Park, Seong-Dae;Kang, Sa-Rah;Kim, Seong-Man;Seo, Han;Lee, Dong-Won;Bang, In-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.429-436
    • /
    • 2012
  • Critical heat flux (CHF) is the thermal limit of a phenomenon in which a phase change occurs during heating (such as bubbles forming on a metal surface used to heat water), which suddenly decreases the heat transfer efficiency, thus causing localized overheating of the heating surface. The enhancement of CHF can increase the safety margins and allow operation at higher heat fluxes; thus, it can increase the economy. A very interesting characteristic of nanofluids is their ability to significantly enhance the CHF. Nanofluids are nanotechnology-based colloidal dispersions engineered through the stable suspension of nanoparticles. All experiments were performed in round tubes with an inner diameter of 0.01041 m and a length of 0.5 m under low pressure and low flow (LPLF) conditions at a fixed inlet temperature using water, 0.01 vol.% $Al_2O_3$/water nanofluid, and SiC/water nanofluid. It was found that the CHF of the nanofluids was enhanced and the CHF of the SiC/water nanofluid was more enhanced than that of the $Al_2O_3$/water nanofluid.

An Experimental Study of the Pool-Boiling CHF on Downward-Facing Plates (하향 평판에서의 풀비등 임계열유속에 관한 실험적 연구)

  • Yang, Soo-Hyung;Baek, Won-Pil;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.493-501
    • /
    • 1994
  • An experimental study has been peformed on the pool-boiling critical heat flux (CHF) phenomenon on downward -facing plates. The CHF for inclinations of -90$^{\circ}$(horizontally downward position), -88$^{\circ}$, -86$^{\circ}$, -84$^{\circ}$, -60$^{\circ}$ and -40$^{\circ}$ were measured using plate-type test sections of 20mm 200mm and 25mm 200mm in a pool of saturated water under atmospheric pressure. The measured CHF was lower for the wider test section and decreased as its orientation approached to the horizontally downward position. The lower CHF can be attributable to the increased difficulty for the bubbles in escaping from the heater surface. When compared with the previous works, the overall trends were similar; however, a transition angle, at which the decrease rate in the CHF was changed, was observed in the vicinity of -80$^{\circ}$.

  • PDF

Derivation of Optimal Design Variables Considering Carbon Monoxide Emission Characteristics of Commercial Gas Stove Burners (업소용 가스레인지 버너의 일산화탄소 배출 특성을 고려한 최적 설계변수 도출)

  • Il Kon Kim;Taehoon Kim
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Commercial gas stoves feed primary air to the burner and burn the fuel-air mixture in a partially premixed combustion. This mechanism produces carbon monoxide during combustion. In this study, design parameters of a commercial gas stove were optimized by considering the carbon monoxide emission. Gas consumption rate, carbon monoxide emission, and water boiling temperature as a heating performance were determined. Carbon monoxide emission was measured using a Korean Industrial Standards standard collector. Water boiling temperature was measured by first soaking the pot in water for approximately 10 min and then heating the pot filled with water. A thermocouple was installed inside the pot. Carbon monoxide increased as the nozzle diameter was increased and the burner-pot height was decreased. This result was due to the insufficient mixing between the fuel and air. Heating performance was enhanced when the nozzle diameter was increased and the burner-pot height was decreased. However, the heating performance deteriorated when the nozzle diameter was 1.8 mm and the burner-pot height was reduced to 50 mm. This phenomenon was due to the formation of a flame on the side of the pot. A merit factor was defined to find the optimal design parameters to satisfy gas consumption rate, carbon monoxide emission, and heating performance. Optimal design values were established to be a nozzle diameter of 1.5 mm and a burner-pot height of 60 mm.

The Analysis of Textbook Contents and Science Teachers' Conceptions on Freezing Point Depression Phenomenon (어느점 내림 현상에 대한 교과서 내용 및 중등 과학 교사들의 개념 분석)

  • Ha, Seong-Ja;Kim, Bum-Gi;Paik, Seoung-Hey
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.2
    • /
    • pp.88-97
    • /
    • 2005
  • The purpose of this study was to investigate explanations of science textbooks and science teachers' conceptions related to freezing point depression phenomenon. Seven kinds of middle school science textbooks and five kinds of high school chemistryII textbooks were analyzed for the purpose. The teachers' conceptions were searched by a questionnaire developed in this study. The subjects were 146 science teachers. The explanation types of science textbooks were divided into two; 'Description of the phenomenon' and 'Vapor pressure lowering'. The explanations in most of middle school science textbooks and high school chemistryII textbooks belong to 'Description of the phenomenon' and there was no explanation of the reason. The graphs related to depression of freezing point were diverse, too. Most of the science teachers also did not have scientific conception. The percentage of the teachers who thought that the cause of freezing point depression was blocking of solute in solution was high. But the teacher could not find meaningful relation the 'Blocking of solute' explanation represented for elevation of boiling point with depression of freezing point. It is insisted that entropy concept is need to explain depression of freezing point phenomenon in this study.

Characterization of PVDF/PU fibers prepared by electrospinning

  • Rho, Jeongwon;Lee, Deuk Yong;Lee, Myung-Hyun;Kim, Bae-Yeon;Jeong, Heeseok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • The 23 wt% polyvinylidene fluoride (PVDF)/15 wt% polyurethane (PU) fibers were electrospun using the conjugated nozzle at a flow rate of 1.0 mL/h and an electric field of 1 kV/cm. The formation of ${\beta}$ crystal phase in the PVDF and the PVDF/PU fibers was confirmed by Fourier transform infrared spectroscopy. After electrospinning, the asspun fibers were immersed in a boiling water and then dried at $100^{\circ}C$ in a convection oven to make a crimp phenomenon. The crimps with a diameter of $2.0{\pm}0.08{\mu}m$ were observed for the PVDF/PU fibers after hydrothermal treatment without sacrificing the extent of ${\beta}$ crystal phase. All the PU, PVDF and PVDF/PU fibers exhibited average cell viability of more than 98 %. The cell proliferation results suggested that L-929 cells adhered well to the PU, PVDF and PVDF/PU fibers and proliferated continuously with increasing time, indicating that the PVDF/PU fibers are highly applicable to the biomedical applications.

Critical Heat Flux Enhancement Mechanism on a Surface with Nano-Structures (나노 구조가 형성된 열전달 표면에서의 임계 열유속 증진 메커니즘)

  • Kim, Dong Eok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.619-624
    • /
    • 2014
  • The critical heat flux (CHF) on a heat transfer surface with nanostructures is known to be significantly better than that on flat surfaces. Several physical mechanisms have been proposed to explain this phenomenon. However, almost all studies conducted so far have been qualitative, and a generalized theory has not yet been established. In this study, we developed a quantitative mechanism for CHF enhancement on a surface with nanostructures, based on vapor recoil and surface adhesion forces. We focused on the increase in the length of the triple contact line owing to the formation of nanostructures and the adhesion force between them and the liquid.

Blending effect of pyrolyzed fuel oil and coal tar in pitch production for artificial graphite

  • Bai, Byong Chol;Kim, Jong Gu;Kim, Ji Hong;Lee, Chul Wee;Lee, Young-Seak;Im, Ji Sun
    • Carbon letters
    • /
    • v.25
    • /
    • pp.78-83
    • /
    • 2018
  • Pyrolyzed fuel oil (PFO) and coal tar was blended in the feedstock to produce pitch via thermal reaction. The blended feedstock and produced pitch were characterized to investigate the effect of the blending ratio. In the feedstock analysis, coal tar exhibited a distinct distribution in its boiling point related to the number of aromatic rings and showed higher Conradson carbon residue and aromaticity values of 26.6% and 0.67%, respectively, compared with PFO. The pitch yield changed with the blending ratio, while the softening point of the produced pitch was determined by the PFO ratio in the blends. On the other hand, the carbon yield increased with increasing coal tar ratio in the blends. This phenomenon indicated that the formation of aliphatic bridges in PFO may occur during the thermal reaction, resulting in an increased softening point. In addition, it was confirmed that the molecular weight distribution of the produced pitch was associated with the predominant feedstock in the blend.

A Study on the Drag Reduction by Shear-thinning Fluid in Turbulent Flow Fields (난류유동장에서 Shear - thinning 유체에 의한 마찰저항 감소에 관한 연구)

  • 차경옥;김재근;오율권
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.126-135
    • /
    • 1997
  • Drag reduction in polymer solutions is the phenomenon where by extremely dilute solutions of high molecular weight polymers exhibit frictional resistance to flow much lower than the pure solvent. This effect, largely unexplained as yet, has attracted the attention of polymer scientists and fluid flow specialists. Although applications are beginning to appear, the principle interest to data has been in attempting to relate the effect to the fluid mechanics of turbulent flow. Drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, and pool and boiling flow. But the research on drag reduction in two phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction produced by polymer addition in the single phase and two phase flow system. The objectives of the proposed investigation are primarily in identifying and developing high performance polymer additives for fluid transportations with the benefits of turbulent drag. Also we want to is to evaluate the drag reduction in horizontal flow by measuring pressure drop and mean velocity. Experimental results show higher drag reduction using co - polymer(A611P) then using polyacrylamide (PAAM) and faster degradation using PAAM than using A611P under the same superficial velocity.

  • PDF

A Study on Distillation Property of Automotive Gasoline and Diesel Fuel (자동차용 가솔린과 디젤 연료의 증류특성에 관한 연구)

  • Youm, Kwang-Wook;Kim, Sang-Jin
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.11-15
    • /
    • 2014
  • Currently, there are active researches being conducted on a new combustion technology that can reduce emission quantity while enhancing vehicle performance as well as Improving fuel quality. In a gasoline engine that uses petroleum, high volatility makes it easy to jump spark ignition and prevent knocking phenomenon that occurs inside an engine. In a diesel engine that uses diesel fuel, high volatility reduces combustion residues and toxic gas and is therefore good for protecting the environment. Therefore, for fuel used in a vehicle, volatility is an important factor that influences not only engine performance but also environmental protection. This research conducted a distillation experiment using gasoline and diesel fuel for vehicles produced by domestic oil companies. The test was conducted in accordance with the method of distillation experiment described in KS M ISO3405. In addition, it used the result of analysis from the experiment to examine visual distillation characteristics of each fuel and developed a formula based on distillation temperature.

The Physical Properties of Sizing Yarn According to Sizing Condition (가호조건에 따른 호부사의 물성변화)

  • 박명수
    • Textile Coloration and Finishing
    • /
    • v.16 no.3
    • /
    • pp.31-38
    • /
    • 2004
  • Polyester fabrics, which is a major product in Daegu and Kyungbuk district, recently have a frequent warp streak phenomenon of sizing textiles for peach skin. So, this paper intensively focuses on the analysis of finding causes of poor products which may be produced in the process of sizing. Depending on the changes of sizing yarn's physical characteristic varying on sizing conditions, results of the research are as followed. 1. Sizing add-on rate, following tension changes of originally supplied yarn in sizing, does not fluctuate until 30g sizing tension, but marks high on the increase of sizing speed. 2. Sizing add-on amount increases approximately by 2.5% when interlacing pressure is raised from 1.5kg/$cm^2$ to 3.5kg/$cm^2$ at $130^{\circ}C$ sizing temperature. 3. Following the increase of sizing tension from 10g to 50g, boiling shrinkage rate of desizing yarn changes approximately from 7% to 11%. But the more sizing temperature and speed increases, the bigger the change rate becomes. 4. The thermal stress of desizing yarn is sensitively influenced by sizing tension in the sizing degree of above $130^{\circ}C$. 5. The deviation rate of sizing yarn's initial modulus value, which is influenced by air pressure in interlacing raw yarn, marks the highest at 40g and 50g strength.