• Title/Summary/Keyword: Boiling Length

Search Result 119, Processing Time 0.035 seconds

Effects of Outer Tube Length on Pool Boiling in an Annulus with Closed Bottoms (하부폐쇄 환상공간의 외부 튜브길이가 풀비등에 미치는 영향)

  • Kang Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.749-755
    • /
    • 2006
  • To improve pool boiling heat transfer in an vertical annulus with closed bottoms, the length of an outer tube has been changed from 0.2m to 0.6m. For the test, a heated tube of 19.1mm diameter and water at atmospheric pressure have been used. Annular conditions are made using glass tubes fabricated around the heated tube. The gap size of the annulus is 3.65mm. To elucidate effects of the outer tube length on heat transfer results of the annulus are compared with the data of a single unrestricted tube and the annulus with wider gap size of 6.35mm. Throughout the tests much higher heat transfer coefficients are observed for the annulus of 3.65mm gap size comparing to the other two cases. The change in the outer tube length results in much variation in heat transfer coefficients. Moreover, with shortening the length of outer tube the possibility of the CHF occurrence can be removed.

Hydrodynamic effects of heater lengths on pool boiling critical heat flux (히터 길이가 수조비등 임계열유속에 미치는 수력학적 영향)

  • Su Cheong Park;Do Yeon Kim;Seon Ho Choi;Chang Hoon Lee;Younghun Lim;Chi Young Lee;Yeon Won Lee;Dong In Yu
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.67-73
    • /
    • 2023
  • In the study, pool boing critical heat flux (CHF) was experimentally investigated depending on the length of heaters. A smooth silicon oxide surfaces are used as the boiling surfaces. As the results of pool boiling experiments based on distilled water in ambient pressure condition, the CHF decreased as the length of the heater increased. By the high speed imaging, it was shown that the number of vapor columns increased as the length of the heater increased. Comparing the number of vapor columns and the CHF according to the heater length, the change in the CHF according to the heater length was analyzed based on the hydrodynamic instability.

Enhancement of the Critical Heat Flux by Using Heat Spreader

  • Yoon, Young-Sik;Hyup Yang;Kwak, Ho-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1063-1072
    • /
    • 2003
  • Direct immersion cooling has been considered as one of the promising methods to cool high power density chips. A fluorocarbon liquid such as FC-72, which is chemically and electrically compatible with microelectronic components, is known to be a proper coolant for direct immersion cooling. However, boiling in this dielectric fluid is characterized by its small value of the critical heat flux. In this experimental study, we tried to enhance the critical heat flux by increasing the nucleate boiling area in the heat spreader (Conductive Immersion Cooling Module). Heat nux of 2 MW/㎡ was successfully removed at the heat source temperature below 78$^{\circ}C$ in FC-72. Some modified boiling curves at high heat flux were obtained from these modules. Also, the concept of conduction path length is very important in enhancing the critical heat flux by increasing the heat spreader surface area where nucleate boiling occurs.

Pool Boiling Heat Transfer in a Vertical Annulus with a Longer Outside Tube (외부 튜브 길이가 긴 수직 환상공간 내부의 풀비등 열전달)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.775-782
    • /
    • 2012
  • To investigate pool boiling heat transfer in a vertical annulus with closed bottoms, the length of an outer tube was varied between 0.3 and 0.6 m. For the test, a heated tube of 0.2-m length and 19.1-mm diameter and water at atmospheric pressure were used. To elucidate the effects of the outer tube length on heat transfer, the results for the annulus were compared with data for a single unrestricted tube. The increase in the outer tube length resulted in an increase or decrease in heat transfer depending on the gap size. This tendency is mainly attributed to the difference in the intensity of liquid agitation.

EFFECTS OF GEOMETRIC PARAMETERS ON NUCLEATE POOL BOILING OF SATURATED WATER IN VERTICAL ANNULI

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.271-278
    • /
    • 2009
  • Nucleate pool boiling of water in vertical annuli at atmospheric pressure has been studied experimentally and two empirical correlations have been suggested to obtain effects of geometric parameters on heat transfer. Data of the present and the previous tests range over a tube length of 0.50-0.57 m, a diameter of 16.5-34.0 mm, and an annular gap size of 3.7-44.3 mm. Through the analysis, tube bottom confinement (open or closed) has been investigated, as well. The developed correlations predict experimental data within a ${\pm}25%$ error bound. It has been identified that effects of the diameter and the length of heated tubes as well as the annular gap size should be counted into the analyses to estimate heat transfer coefficients accurately.

A Study on the Performance of Boiling Heat Transfer of Two-Phase Closed Thermosyphons with Various Helical Grooves (나선 그루브형 열사이폰의 그루브 수의 변화에 대한 비등열전달 성능에 관한 연구)

  • Han Kyu Il;Cho Dong Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.131-139
    • /
    • 2005
  • This study concerns the performance of boiling heat transfer in two-phase closed thermosyphons with various helical grooves. Distilled water, methanol, ethanol have been used as the working fluids. In the present work, a copper tube of the length of 1200 mm and 14.28 mm of inside diameter is used as the container of the thermosyphon. Each of the evaporator and the condenser section has a length of 550 mm, while the remaining part of the thermosyphon tube is adiabatic section. A experimental study was carried out for analyzing the Performances of having 50, 60, 70, 80 and 50 helical grooves. A Plain thermosyphon having the same inner and outer diameter as the grooved thermosyphons is also tested for comparison. The type of working fluid and the numbers of grooves of the thermosyphons with various helical grooves have been used as the experimental parameters. The experimental results have been assessed and compared with existing theories. The results show that the number of grooves and the type of working fluids are very important factors for the operation of thermosyphons. The helical grooved thermosyphons having 50 to 60 grooves in water, 60 to 70 grooves in methanol and ethanol shows the best heat boiling heat transfer coefficient.

NEAR-WALL GRID DEPENDENCY OF CFD SIMULATION FOR A SUBCOOLED BOILING FLOW USING WALL BOILING MODEL (벽 비등모델을 이용한 과냉비등 유동에 대한 CFD 모의계산에서 벽 인접격자의 영향)

  • In, W.K.;Shin, C.H.;Chun, T.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.24-31
    • /
    • 2010
  • boiling flow in vertical tube. The multiphase flow model used in this CFD analysis is the two-fluid model in which liquid(water) and gas(vapour) are considered as continuous and dispersed fluids, respectively. A wall boiling model is also used to simulate the subcooled boiling heat transfer at the heated wall boundary. The diameter and heated length of tube are 0.0154 m and 2 m, respectively. The system pressure in tube is 4.5 MPa and the inlet subcooling is 60 K. The near-wall grid size in the non-dimensional wall unit for lqiuid phase ($y^+_{w,l}$) was examined from 101 to 313 at the outlet boundary. The CFD calculations predicted the void distributions as well as the liquid and wall temperatures in tube. The predicted axial variations of the void fraction and the wall temperature are compared with the measured ones. The CFD prediction of the wall temperature is shown to slightly depend on the near-wall grid size but the axial void prediction has somewhat large dependency. The CFD prediction was found to show a better agreement with the measured one for the large near-wall grid, e.g., $y^+_{w,l}$ > 300 at the tube exit.

Convective Boiling Two-phase Flow in Trapezoidal Microchannels : Part 2-Heat Transfer Characteristics (사다리꼴 미세유로의 대류비등 2상유동 : 2부-열전달 특성)

  • Kim, Byong-Joo;Kim, Geon-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.718-725
    • /
    • 2011
  • Characteristics of flow boiling heat transfer in microchannels were investigated experimentally. The microchannels consisted of 9 parallel trapezoidal channels with each channel having 205 ${\mu}m$ of bottom width, 800 ${\mu}m$ of depth, $3.6^{\circ}$ of sidewall angle, and 7 cm of length. Tests were performed with R113 over a mass velocity range of 150~920 $kg/m^2s$, heat flux of 10~100 $kW/m^2$ and inlet pressures of 105~195 kPa. Flow boiling heat transfer coefficient in microchannels was found to be dominated by heat-flux. However the effect of mass velocity was not significant. Contrary to macrochannel trends, the heat transfer coefficient was shown to decrease with increasing thermodynamic equilibrium quality. A new correlation suitable for predicting flow boiling heat transfer coefficient was developed based on the laminar single-phase heat transfer coefficient and the nucleate boiling dominant equation. Comparison with the experimental data showed good agreement.

Simulation of a natural circulation evaporative concentrator (자연순환형 소형 진공증발농축장치 시뮬레이션)

  • Park, Ji-Hoon;Kim, Nae-Hyun;Choi, Young-Min;Oh, Wang-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1283-1287
    • /
    • 2009
  • In this study, an analysis was performed on an evaporative steam generator (concentrator), where natural circulation convective boiling occurs on tube-side by condensing hot steam on shell-side. Existing correlations on two-phase pressure drop, boiling or condensation heat transfer were used for the analysis. The effect of number of tubes, tube length, etc. on thermal performance was investigated. Simulation results reveal that steam generation rate increases almost proportionally to the tube length, or number of tubes. It is also shown that water circulation rate decreases as tube length increases.

  • PDF

NEAL-WALL GRID DEPENDENCY OF CFD SIMULATION FOR A SUBCOOLED BOILING FLOW (과냉 비등유동에 대한 CFD 모의 계산에서의 벽 인접격자 영향)

  • In, W.K.;Shin, C.H.;Chun, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.320-325
    • /
    • 2010
  • A multiphase CFD analysis is performed to investigate the effect of near-wall grid for simulating a subcooled boiling flow in vertical tube. The multiphase flow model used in this CFD analysis is the two-fluid model in which liquid(water) and vapor(steam) are considered as continuous and dispersed fluids, respectively. A wall boiling model is also used to simulate the subcooled boiling heat transfer at the heated wall boundary. The diameter and heated length of tube are 0.0154 m and 2 m, respectively. The system pressure in tube is 4.5 MPa and the inlet subcooling is 60 K. The near-wall grid size in the non-dimensional wall unit ($y_{w}^{+}$) was examined from 64 to 172 at the outlet boundary. The CFD calculations predicted the void distributions as well as the liquid and wall temperatures in tube. The predicted axial variations of the void fraction and the wall temperature are compared with the measured ones. The CFD prediction of the wall temperature is shown to slightly depend on the near-wall grid size but the axial void prediction has somewhat large dependency. The CFD prediction was found to show a better agreement with the measured one for the large near-wall grid, e.g., $y_{w}^{+}$ > 100.

  • PDF