• Title/Summary/Keyword: Boiling Channel

Search Result 79, Processing Time 0.077 seconds

Numerical Study of Bubble Growth in a Microchannel (미세관에서의 기포성장에 대한 수치적 연구)

  • Seo, Ki-Chel;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1891-1896
    • /
    • 2003
  • The bubble motion during nucleate boiling in a microchannel is investigated numerically. The liquid-vapor interface is tracked by a level set method which is modified to include the effects of phase change at the interface and contact angle at the wall. The computations are made for various channel sizes, liquid flow rates, and contact angles. Based on the numerical results, the bubble growth pattern and its effect on the flow and heat transfer are discussed.

  • PDF

Forced convective Heat Transfer in rectangular channel (사각 채널에서의 강제대류 열전달)

  • Lim, T.W.;You, S.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.37-43
    • /
    • 2012
  • This paper performed experimental research in order to measure boiling heat transfer coefficient of water in microchannel with hydraulic diameter of $500{\mu}m$. Tests were conducted within the ranges of heat fluxes from 100 to 400 kW/$m^2$, vapor qualities from 0 to 0.2, and mass fluxes of 200, 400, and 600 kg/$m^2s$. From the experimental results, it was found that flow boiling heat transfer coefficient is not dependent on mass flux or vapor quality, but instead on heat flux to a certain degree. The measured data of heat transfer are compared to a few available correlations proposed for mini-channels. Among them, Sun and Mishima's correlation is found to predict the present data well, within the mean absolute error of 17.84%.

An experimental study on the effect of parameters for onset of nucleate boiling in concentric annuli flows (이중 동심관 유동에서 핵비등 시발점의 영향인자에 대한 실험적 연구)

  • Song, J.H.;Kim, K.C.;Lee, S.H.;Park, J.H.;Suk, H.C.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.373-378
    • /
    • 2000
  • An experimental investigation on the incipience of nucleate boiling in forced flow of water is performed as a verification and extension of previous analysis. The effects of the subcooling, Reynolds number and surface curvature on the onset of nucleate boiling(ONB) in a concentric annulus flow channel with smooth inner heating surface is investigated experimentaly. Through flow visualization, the boiling phenomenon was observed directly and the experimental results were examined to find ONB heat flux. The results show that the variation of heat flux at ONB is increased linearly as the Reynolds number and subcooling are increased. The effect of surface curvature is very great specially for a small radius when radius of the inner heating tube is increased, the heat flux at ONB is almost inversely increased for the range of this investigation. It is found that the effect of convex surface curvature on ONB heat flux is very significant for a small radius.

  • PDF

Evaporating Heat Transfer Characteristics of R-l34a in a Horizontal Smooth Channel

  • Pamitran, A.S.;Choi, Kwang-Il;Oh, Jong-Taek;Oh, Hoo-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.4
    • /
    • pp.156-165
    • /
    • 2006
  • Convective boiling heat transfer coefficients were measured in a horizontal minichannel with R-l34a. The test section was made of stainless steel tube with an inner diameter of 3.0 mm and a length of 2m. It was uniformly heated by applying electric current directly to the tube. Local heat transfer coefficients were obtained for heat fluxes from 10 to $40kW/m^2$, mass fluxes from 200 to $600kgT/m^2s$, qualities up to 1.0, and the inlet saturation temperature of $10^{\circ}C$. The experimental results were mapped on Wojtan et $al.'s^(7)$ and Wang et $al.'s^(8)$ flow pattern maps. The nucleate boiling was predominant at low vapor quality whereas the convective boiling was predominant at high vapor quality. Laminar flow appeared in the flow with minichannel. The experimental results were compared with six existing two-phase heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model for refrigerants was developed with mean and average deviations of 10.39% and -3.66%, respectively.

CFD Code Development for a Two-phase Flow with an Interfacial Area Transport Equation (계면면적 수송방정식을 적용한 이상유동 해석코드 개발)

  • Bae, B.U.;Yoon, H.Y.;Euh, D.J.;Song, C.H.;Park, G.C.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2696-2701
    • /
    • 2007
  • For the analysis of a two-phase flow, the interaction between two phases such as the interfacial momentum or heat transfer is proportional to the interfacial area. So the interfacial area concentration (IAC) is one of the most important parameters governing the behavior of each phase. This study focuses on the development of a computational fluid dynamics (CFD) code for investigating a boiling flow with a one-group IAC transport equation. It was based on the two-fluid model and governing equations were calculated by SMAC algorithm. For checking the robustness of the developed code, the experiment of a subcooled boiling in a vertical annulus channel was analyzed to validate the capability of the IAC transport equation. As the results, the developed code was confirmed to have the capability in predicting multi-dimensional phenomena of vapor generation and propagation in a subcooled boiling.

  • PDF

A study on the transient cooling process of a vertical-high temperature tube in an annular flow channel (환상유로에 있어서 수직고온관의 과도적 냉각과정에 관한 연구)

  • 정대인;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.156-164
    • /
    • 1986
  • In the case of boiling on high temperature wall, vapor film covers fully or parcially the surface. This phenomenon, film boiling or transition boiling, is very important in the surface heat treatment of metal, design of cryogenic heat exchanger and emergency cooling of nuclear reactor. Mainly supposed hydraulic-thermal accidents in nuclear reactor are LCCA (Loss of Coolant Accident) and PCM (Power-Cooling Mismatch). Recently, world-wide studies on reflooding of high temperature rod bundles after the occurrence of the above accidents focus attention on wall temperature history and required time in transient cooling process, wall superheat at rewet point, heat flux-wall superheat relationship beyond the transition boiling region, and two-phase flow state near the surface. It is considered that the further systematical study in this field will be in need in spite of the previous results in ref. (2), (3), (4). The paper is the study about the fast transient cooling process following the wall temperature excursion under the CHF (Critical Heat Flux) condition in a forced convective subcooled boiling system. The test section is a vertically arranged concentric annulus of 800 mm long and 10 mm hydraulic diameter. The inner tube, SUS 304 of 400 mm long, 8 mm I.D, and 7 mm O.D., is heated uniformly by the low voltage AC power. The wall temperature measurements were performed at the axial distance from the inlet of the heating tube, z=390 mm. 6 chromel- alumel thermocouples of 76 .mu.m were press fitted to the inner surface of the heating tube periphery. To investigate the heat transfer characteristics during the fast transient cooling process, the outer surface (fluid side) temperature and the surface heat flux are computed from the measured inner surface temperature history by means of a numerical method for inverse problems of transient heat conduction. Present cooling (boiling) curve is sufficiently compared with the previous results.

  • PDF