• Title/Summary/Keyword: Boiler control

Search Result 319, Processing Time 0.034 seconds

A Fault Detection System Design for Boiler-Turbine Control System of Thermal Power Pant (화력발전소 보일러-터빈 제어시스템의 고장검출시스템 설계)

  • Yoo, Seog-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.615-620
    • /
    • 2015
  • This paper deals with a fault detection system design for a boiler-turbine control system of thermal power plant. We described the nonlinear properties of the boiler-turbine dynamics as a T-S fuzzy system with time varying measurable parameters. We design a residual generator using an observer based fault detection filter. In order to identify the faulted output sensor, an approximate inverse system is connected to the outport of the fault detection filter. We demonstrate the efficiency of the suggested design method via computer simulations.

Design of a Multivariable Fuzzy Controller for the Boiler-Turbine System (보일러-터빈 시스템의 위한 다변수 퍼지 제어기 설계)

  • Jo, Gyeong-Wan;Kim, Sang-U;Kim, Jong-Uk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.4
    • /
    • pp.295-303
    • /
    • 2001
  • The demand for steam generators is increasing in industrial systems in which the design strategy should be implemented for safe and efficient operation of steam generators. It is, however, difficult to design a controller by the conventional method because of the nonlinear dynamics of the steam generator and influences by the set value of disturbance. This paper presents an automatic parameter optimization technique for a multivariable fuzzy controller using evolutionary strategy, At first, we use the steady state information such as a steady state gain matrix(SSGM) and a relative gain matrix(RGM). We can obtain much information on the control inputs and the outputs of the boiler-turbine system from the matrices. In order to determine the structure of the controller by using RGM and SSGM, the fuzzy rules are trained by evolutionary strategy. The good performance of the proposed multivariable fuzzy controller is verified through simulations.

  • PDF

A Circulating Fluidized Bed Boiler Control (순환 유동층 보일러 제어)

  • Kim, Eung-Seok;Lee, Chan-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.722-724
    • /
    • 1998
  • One of the major concerns of our time is the need to use energy economically and rationally while at the same time, protecting the environment. Circulating Fluidized Bed(CFB) Boilers represent a proven, very attractive clean coal technology, with the added advantage of an unusual fuel flexibility CFB boiler is the best available compromise between cost and environment for fossil fuel power plant. This paper briefly describes CFB process and 200MW CFB boiler for Tonghae power plant. Also, discussed are differences between the control process of fluidized bed and conventional boilers, and applied control process for Tonghae power plant.

  • PDF

Auto-tuning of boiler drum level controller in Thermal Power Plant (화력 발전소 보일러 드럼수위 제어기의 자동 동조)

  • Lee, J.H.;Joo, H.Y.;Byun, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2584-2586
    • /
    • 2000
  • A drum level control is one of the most important control systems in thermal power plant. The control objective of drum level of boiler in thermal power plant is to maintain drum level at constant set-point regardless of disturbance such as main steam flow. The implemented drum level controller is the cascade PI controller. The important factor in drum level controller is the parameters of two PI controllers. The tuning of PI controller parameter is tedious and time-consuming job. In this paper, the relay feedback Ziegler - Nichols tuning method extended to auto-tune cascade PI drum level controller. Finally, the simulation result using boiler model in Power Plant shows the validity of auto-tuned cascade PI controller.

  • PDF

Analysis of Transient Characteristics of a Steam Power Plant System (증기발전 시스템의 과도상태 특성 해석)

  • Park, Keun-Han;Kim, Tong-Seop;Ro, Sung-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.967-975
    • /
    • 2000
  • Transient characteristics of a boiler and turbine system for a steam power plant are simulated. One-dimensional unsteady models are introduced for each component. An interaction between boiler and turbine and a control of the water level in the drum are taken into account. Transient responses of the system to the variations of main system variables such as fuel and air flow rate, cooling water injection rate at the attemperator, gas recirculation rate at the furnace and opening of the turbine control valve are examined. Effect of fluid inertia and tube wall thermal inertia on predicted dynamic behavior is investigated.

An Intelligent Multi-multivariable Dynamic Matrix Control Scheme for a 160 MW Drum-type Boiler-Turbine System

  • Mazinan, A.H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.240-245
    • /
    • 2012
  • A 160 MW drum-type boiler-turbine system is developed in the present research through a multi-multivariable dynamic matrix control (DMC) scheme and a multi-multivariable model approach. A novel intelligence-based decision mechanism (IBDM) is realized to support both model approach and control scheme. In such case, the responsibility of the proposed IBDM is to identify the best multivariable model of the system and the corresponding multivariable DMC scheme to cope with the system at each instant of time in an appropriate manner.

Composition of operation window in a domestic boiler distributed control system (국내 발전소 보일러용 분산제어시스템 운전 화면 구성)

  • Shin, Mahn-Su;Byun, S.H.;Park, Du-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2027-2029
    • /
    • 2001
  • In this paper, we are trying to think over operation window of application to a domestic boiler distributed control system. The detailed contents are a plant system overview, and operation window overview, difficulty in changing control system, vision.

  • PDF

A Study on the Control of the Exhaust CO from Gas Boiler (가스보일러 일산화탄소 제어에 관한 연구)

  • Jo Young-Do;Choi Kyoung-Suhk;Kim Ji-Yoon;Kim Chang-Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.1
    • /
    • pp.7-14
    • /
    • 2001
  • In this work, the chemical composition of the exhaust gas from domestic gas boiler has been analysed in the point of thermodynamics and CO sensor has been characterized. We proposed that the combustion condition can be estimated by the exhaust gas composition, i.e., the excess air ratio and combustion temperature can be calculated simply by the measurement of the $O_{2}$ fraction and $H_{2}/CO$ in the exhaust gas. By analyse the on site situation domestic boiler, the excess air ratio is about $55\~110\%$. Therefore, the CO may be produced in domestic gas boiler by luminous(yellow) flames rapidly lose heat by radiation, turbulent flames may be partially quenched by the action of steep velocity gradients, and flames burning very close to a cold wall may be partial1y quenched by heat conductivity to the wall. The output voltage of CO sensor is lineally depend on the CO and $H_{2}$concentration. And the exhaust CO from boiler can be reduced by closed loop control with CO sensor

  • PDF

A Study on the Step Response Model Development of a Dynamic Matrix Control(DMC) For Boiler-Turbine Systems in a Fossil Power Plant (화력발전 보일러-터빈 시스템을 위한 Dynamic Matrix Control(DMC)의 계단응답모델 선정에 관한 연구)

  • Moon, Un-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.125-133
    • /
    • 2006
  • This paper presents comparison results of Step Response Model of Dynamic Matrix Control(DMC) for a drum-type boiler-turbine system of a fossil power plant. Two possible kinds of step response models are investigated in designing the DMC, one is developed with the linearization of theoretical model and the other is developed with the process step-test data. Then, the control performances of each model-based DMC are simulated and evaluated. It is observed that the simulation results with the step-response model based on the test data show satisfactory results, while the linearized model is not suitable for the control of boiler-turbine system.

발전용 보일러 억제 자동화 경향

  • 이칠환
    • Journal of the KSME
    • /
    • v.20 no.2
    • /
    • pp.134-140
    • /
    • 1980
  • 이미 주지하고 있는 모든 산업분야에서 자동제어를 채택하고 있는 근본 이유는 품질향상, 제품의 균일성향상, Energy 절약(효율향상), 원료절약, 설비이용향상, 인간의 단조로운 천업감소, (운전원의 효율성 증대) 때문이라고 요약 할 수 있다. 1910년경 Draft 및 급수제어 분야에서 부터 경제성 기술성 및 이용 요청에 따라 Boiler Control이 사용되어 왔으며 他 기술은 놀라울 정도로 발달한 반면, 이 분야는 변화가 거의 서서히 일어났다. 과거 50년 전부터 Boiler 자동제어기술은 관련 분야의 기술적 개발과 경제적 이유로 아래와 같이 여섯 단계의 발전과정을 거쳐 이제부터는 Digital 특히 Distributed Digital (기능 분산 형 System) 개발 및 산업적용에의 움직임이 활발할 것이다. 여기서 화력발전 Boiler 자동화의 어제와 오늘 그리고 내일에 대하여 소개하고자 한다.

  • PDF