• Title/Summary/Keyword: Boiler Superheater tube

Search Result 21, Processing Time 0.02 seconds

Prediction of Thermal Load Distribution and Temperature of the Superheater in a Tangentially Fired Boiler (접선 연소식 보일러의 최종 과열기 열부하 분포 및 튜브 온도 예측에 관한 연구)

  • Park, Ho-Young;Sea, Sang-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.478-485
    • /
    • 2008
  • The extreme steam temperature deviation experienced in the superheater of a tangentially fired boiler can seriously affect its economic and safe operation. This temperature deviation is one of the main causes of boiler tube failures. The steam temperature deviation is mainly due to the thermal load deviation in the lateral direction of the superheater. The thermal load deviation consists of several causes. One of the causes is the non-uniform heat flow distribution of burnt gas on the superheater tube system. This distribution is very difficult to measure in situ using direct experimental techniques. So, we need thermal load model to estimate the tube temperature. In this paper, we propose a thermal load distribution model by using CFD analysis and plant data. We successfully predict the tube temperature and the steam flow rate in a final superheater system from the thermal load model and one dimensional heat-flow system analysis. The proposed model and analysis method would be valuable in preventing the frequent tube failure of the final superheater tubes.

A Study on the Uniform Distribution of Steam Flow in the Superheater Tube System (과열기 관군에서의 증기유량 균일 배분 연구)

  • Park, Ho-Young;Kim, Sung-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.416-426
    • /
    • 2008
  • The boiler tube failure often experienced in the superheater of a utility boiler can seriously affect the economic and safe operation of the power plant. It has been known that this failure is mainly caused by the thermal load deviation in the superheater tube system, and deeply intensified by the non-uniform distribution of steam flow rates. The nonuniform steam flow is distinctively prominent at low power load rather than at full power load. In this paper, we analyze the steam flow distribution in the superheater tube system by using one dimensional flow network model. At 30% power load, the deviation of steam flow rate is predicted to be within 0.8% of the averaged flow rate. This deviation can be reduced to 0.1% and 0.07% by assuming two cases, that is, the removal of 13th tube at each tube rows and the installation of intermediate header, respectively. The assumed two cases would be effective for the uniform steam flow distribution across 85 superheater tube rows.

Modelling and Verification of Once-Through Subcritical Heat Recovery Steam Generator (관류형 아임계압 배열회수보일러의 열성능 모델링과 검증)

  • Lee, Chae-Soo;Choi, Young-Jun;Kim, Hyun-Gee;Yang, Ok-Chul;Chong, Chae-Hon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1692-1697
    • /
    • 2004
  • The once-through heat recovery steam generator is ideally matched to very high temperature and pressure, well into the supercritical range. Moreover this type of boiler is structurally simpler than drum type boiler. In drum type boiler, each tube play a well-defined role: water preheating, vaporization, superheating. Empirical equations are available to predict the average heat transfer coefficient for each regime. For once-through heat recovery steam generator, this is no more the case and mathematical models have to be adapted to account for the disappearance of drum type economizer, boiler, superheater. General equations have to be used for each tube of boiler, and actual heat transfer condition in each tube has to be identified.

  • PDF

The Evaluation of Mechanical Property of X20CrMoV12.1 Boiler Tube Steels (X20CrMoV12.1강의 열화에 따른 기계적특성 평가)

  • Kim, B.S.;Lee, S.H.;Kim, D.S.;Jung, N.G.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.18-22
    • /
    • 2004
  • Boiler is one of the most important utilities providing steam to turbine in order to supply mechanical energy in thermal power plant. It is composed of thousands of tubes for high efficient heat transfer. The material for boiler tubes is used in such high temperature and pressure condition as $540^{\circ}C$, 22MPa. The boiler tube material is required to resist creep damage, fatigue cracking, and corrosion damages. 2.25%Cr-1Mo steel is used for conventional boiler tubes, and austenitenite stainless steel is used for higher temperature boiler tubes. But the temperature and pressure of steam in power plant became higher for high plant efficiency. So, the property of boiler tube material must be upgaded to fit the plant property. Several boiler tube material was developed to fit such conditions. X20CrMoV12.1 steel is also developed in 1980's and used for superheater and reheater tubes in supercritical boilers. The material has martensite microstructures which is difficult to evaluate the degradation. In this thesis, degrade the X20CrMoV12.1 steel at high temperatures in electric furnace, and evaluate hardness with Vickers hardness tester and strengths with Indentation tester.

  • PDF

A Study on the Characteristics of Pollutants in CFBC Boiler with Ammonium Sulfate Injection (황산암모늄 주입시 CFBC 보일러의 오염물질 특성 연구)

  • Lee, Chang-Yeol;Jeong, Bok-Hoa;Chung, Jin-Do
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.754-761
    • /
    • 2018
  • There is growing concern over the effects of global warning. In response, the power generation sector must consider a wider range of systems and fuels to generate power. One of the classes of solid fuels that is being increasingly developed is biomass. However, one of the most serious problems that biomass plants face is severe corrosion. To mitigate the problem, various approaches have been proposed in terms of additive utilization. This study is based on the results obtained during the co-combustion of wood chip and waste wood in a circulating fluidized bed boiler (CFBC boiler). The KCl concentration was reduced from 59.9 ppm to 3.9 ppm during the injection of ammonium sulfate, and NOx was reduced by 25.5 ppm from 30.6 ppm to 5.1 ppm. However, SOx increased by 110.2 ppm from 33.2 ppm to 143.4 ppm, and HCl increased by 71.5 ppm from 340.5 ppm to 412.0 ppm. Thus, we confirmed that the attitude of the superheater tube was reduced by 87 ~ 93%, and the injection of ammonium sulfate was effective in preventing high-temperature corrosion.

A Study on the Oxide Scale of the Long Term Serviced 12%Cr Boiler Tube Steel (장기간 사용한 12%Cr강 보일러 튜브의 산화스케일에 관한 연구)

  • Kim, Beom-Soo;Min, Taek-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.281-287
    • /
    • 2012
  • The internal oxide scale of twelve superheater and reheater tubes were tested which were serviced for 30,000~120,000 hours in thermal power plants. The oxide scale was formed in three layers. The Cr-rich area was observed beneath the original metal surface. The hematite ($Fe_2O_3$) phase was formed on the outer surface. The intermediate layer was magnetite ($Fe_3O_4$). The thickness of Cr-rich layer was about half of the total scale. All layers grew during the operation hour of the plant. The thickness of thickest scale was 0.2mm in superheater tubes. This can increase the tube metal temperature about $7^{\circ}C$ more than initial state. $7^{\circ}C$ tube metal temperature can reduce tube life about 30%, but the boiler tube's design margin is big enough therefore it has been analyzed that it would not effect on the life span.

Temperature Prediction Method for Superheater and Reheater Tubes of Fossil Power Plant Boiler During Operation (화력발전 보일러 과열기 및 재열기 운전 중 튜브 온도예측기법)

  • Kim, Bum-Shin;Song, Gee-Wook;Yoo, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.563-569
    • /
    • 2012
  • The superheater and reheater tubes of a heavy-load fossil power plant boiler can be damaged by overheating, and therefore, the degree of overheating is assessed by measuring the oxide scale thickness inside the tube during outages. The tube temperature prediction from the oxide scale thickness measurement is necessarily accompanied by destructive tube sampling, and the result of tube temperature prediction cannot be expected to be accurate unless the selection of the overheated point is precise and the initial-operation tube temperature has been obtained. In contrast, if the tube temperature is to be predicted analytically, considerable effort (to carry out the analysis of combustion, radiation, convection heat transfer, and turbulence fluid dynamics of the gas outside the tube) is required. In addition, in the case of analytical tube temperature prediction, load changes, variations in the fuel composition, and operation mode changes are hardly considered, thus impeding the continuous monitoring of the tube temperature. This paper proposes a method for the short-term prediction of tube temperature; the method involves the use of boiler operation information and flow-network-analysis-based tube heat flux. This method can help in high-temperaturedamage monitoring when it is integrated with a practical tube-damage-assessment method such as the Larson-Miller Parameter.

A Study on the Degradation Evaluation of X20CrMoV12.1 Steel (X20CrMoV12.1강의 열화평가에 관한 연구)

  • Lee, S.H.;Kim, T.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.58-64
    • /
    • 2012
  • Power plant boiler is one of the most important utilities providing steam to turbine in thermal power plant. It is composed of thousands of boiler tubes for high efficient heat transfer. Boiler tube material is used in such high temperature and pressure as $540^{\circ}C$, $170kg/mm^2$. The boiler tube material is needed to resist corrosion damage, creep damage and fatigue damage. 2.25%Cr-1Mo steel is used for conventional boiler tubes. In these days steam temperature and pressure of the power plant became higher for high plant efficiency. So, the material property of boiler tube must be upgraded to meet the plant property. Several boiler tube material was developed to meet such condition. X20CrMoV12.1 steel is also developed in early 1980's and used for superheater and reheater tubes in supercritical boilers. The material has martensitic structure, which is difficult to evaluate the material degradation. Boiler tube material at severe condition was tested to evaluate long term and short term degradation and creep. Through long term and high temperature degradation test, lath structure was decreased and recrystallization has been proceeded by sub-crystal. And in this research the effect of temperature and stress on boiler tube characteristic,for example, deformation by creep was changed rapidly at relatively high temperature and stress because creep was affected easily by temperature and stress.

Studies on the Combustion Characteristics and NO Distribution in the Pulverized Coal Fired Boiler (대용량 미분탄 보일러의 연소특성 및 NO 분포 특성 연구)

  • Park, Ho-Young;Kim, Young-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.552-559
    • /
    • 2008
  • Three dimensional numerical analysis were performed to investigate the combustion characteristics in a tangentially fired pulverized coal boiler. The predicted values at the outlet of economizer for the gas temperature, O$_2$, NO, CO were been compared with the measured data. By using the actual operating conditions of the power plant, the distribution of velocity, gas temperature, O$_2$, CO, CO$_2$ and NO as well as the particle tracking in the boiler were investigated. Throughout the present study, the non-uniform distribution of flue gas temperature in front of the final superheater might be resulted from the residual swirl flow in the upper furnace of the boiler. The present analysis on non-uniform distribution of the gas temperature could provide the useful information to prevent the frequent tube failure from happening in the final superheater of the tangentially coal-fired boiler.

Computational Studies on the Combustion and Thermal Performance of the Coal Fired Utility Boiler : Temperature and Thermal Energy Distribution (석탄화력 보일러 연소열성능 해석 : 온도와 열에너지 분포를 중심으로)

  • Seo, Sang-Il;Park, Ho-Young;Lee, Sung-No
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.157-166
    • /
    • 2009
  • The pulverized coal combustion behavior in the coal fired utility boiler has been investigated with the CFD and process analysis techniques. The used commercial software were CFX and PROATES, and these were coupled each other to get more reliable boundary condition set-up, resulting in more reliable solution. For two cases which were the actual operation condition of A power plant, the calculated values from the coupled CFD and process analysis for thermal energy system were compared with the plant data, and the good agreements were obtained for Case 1 and 2. The calculated temperature distributions on the surface of heat exchangers were compared with the plant data for the steam temperatures across heat exchangers, and these explained the actual operating situation very well. The temperature deviation across the final superheater tube, which was believed to be the main cause of the frequent tube failure, were also explained very well with the calculated distributions of gas temperature and radiation on the plane of the final superheater.