• Title/Summary/Keyword: Bohai Sea and Yellow Sea

Search Result 13, Processing Time 0.022 seconds

Difference of Nutrients Budgets in the Bohai Sea between 1982 and 1992 related to the Decrease of the Yellow River Discharge

  • Hayashi, Mitsuru;Yanagi, Tetsuo;Xinyu, Guo
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.14-19
    • /
    • 2004
  • Difference of Dissolved Inorganic Phosphorus (DIP), Dissolved Inorganic Nitrogen (DIN) and Dissolved Silicate (DSi) budgets in the Bohai Sea between 1982 and 1992 related the decrease of the Yellow River discharge is discussed on the basis of observed data. The estuarine circulation in the Bohai Sea had been weakened from 1982 to 1992 due to the decrease of the Yellow River discharge and the average residence time of fresh water had become longer. DIN concentration increased but DIP and DSi concentrations decreased from 1982 to 1992 in the Bohai Sea. Primary production was regulated mainly by water temperature and DIN concentration in 1982 but it was regulated mainly by DIP concentration in 1992. Primary production was larger than decomposition plus bottom release and nitrogen fixation was larger than denitrification in 1982. However, decomposition plus bottom release was larger than primary production and denitrification was larger than nitrogen fixation in 1992 in the Bohai Sea.

Water and Salt Budgets for the Yellow Sea

  • Lee, Jae-Hak;An, Byoung-Woong;Bang, Inkweon;Hong, Gi-Hoon
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.125-133
    • /
    • 2002
  • Water and salt budgets in the Yellow Sea and Bohai are analyzed based on the historical data and CTD data collected recently using box models. The amounts of volume transport and of water exchange across the boundary between the Yellow and East China Seas are estimated to be 2,330-2,840 $\textrm{km}^3$/yr and 109-133 $\textrm{km}^3$/yr, respectively, from the one-layer box model. Corresponding water residence time is 5-6 years. In the Bohai, water residence time is twice as long as that in the Yellow Sea, suggesting that the Yellow Sea and Bohai cannot be considered as a single system in the view of water and salt budgets. The results indicate that water and salt budgets in the Yellow Sea depend almost only on the water exchange between the Yellow and East China Seas. The computation with the coupled two-layer model shows that water residence time is slightly decreased to 4-5 years for the Yellow Sea. In order to reduce uncertainties for the budgeting results the amount of the discharge from the Changjiang that enters into the Yellow Sea, the vertical advection and vertical mixing fluxes across the layer interface have to be quantified. The decreasing trend of the annual Yellow River outflow is likely to result that water residence time is much longer than the current state, especially for the Bohai. The completion of the Three Gorges dam on the Changjiang may be change the water and salt budgets in the Yellow Sea. It is expected that cutting back the discharge from the Changjiang by 10% through the dam would increase water residence time by about 10%.

DISTRIBUTION CHARACTERISTICS AND AFFECTING FACTORS OF SPRING HETEROTROPHIC BACTERIA IN BOHAI SEA

  • Bai, Jie;Li, Kuiran;Li, Zhengyan;Gao, Huiwang;Wu, Zengmao
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2001.11a
    • /
    • pp.6-10
    • /
    • 2001
  • Distribution characteristics, variation patterns and affecting factors of hetorotrophic bacteria were studied from April to May 1999 in Bohai Sea by standard Acridine Orange epifluorescence microscopy (AO method). The biomass in surface waters showed a small day-night variation, varying from 0.13-2.51$\mu\textrm{m}$$.$dm$\^$-3/ with an average of 0.84 $\mu\textrm{m}$$.$dm$\^$-3/. The biomass in bottom waters showed, however, a large variation, changing from 0.15-4.18 $\mu\textrm{m}$$.$dm$\^$-3/ with an average of 1.36 $\mu\textrm{m}$$.$dm$\^$-3/. The peak values were obtained at 5 and 11 am. The bottom water biomass showed a significant correlation with particulate organic carbon (r=0.639, p<0.05). Heterotrophic bacteria showed high biomass in nearshore waters and low values in offshore areas with a high biomass zone around Yellow Sea river mouth, which was consistent with the distribution of nutrients. The vertical distribution of heterotrophic bacteria showed biomass in bottom waters was higher than in surface water. The biomass of heterotrophic bacteria in Bohai Sea was similar with that in other marine waters.

  • PDF

Four unrecorded species of free-living nematodes from the sublittoral zone in the East Sea, Korea

  • Jung-Ho Hong;Kichoon Kim;Seunghan Lee;Kanghyun Lee
    • Journal of Species Research
    • /
    • v.13 no.2
    • /
    • pp.147-158
    • /
    • 2024
  • Four species of the free-living nematodes were collected from marine sediments in the sublittoral zone in the East Sea, Korea and were identified, described, and illustrated. Paranticoma tricerviseta Zhang, 2005, originally described from the Bohai Sea, China, is recorded for the first time in the East Sea, Korea; only in body length and thickness (1902-2282 ㎛ compared to 2472-3300 ㎛, 50-62 ㎛ compared to 57-82 ㎛, respectively). Specimens of Parodontophora marina Zhang, 1991, from East Sea, Korea largely agrees with the original description of Zhang (1991) of nematodes from the Bohai Sea, except for differences in body length and thickness (1190-1345 ㎛ compared to 1235-1408 ㎛, 40-44 ㎛ compared to 42-72 ㎛). Terschellingia longicaudata de Man, 1907 is reported for the first time in Korea, but was previously considered a cosmopolitan species of nematodes with a widespread distribution from the North Sea, Belgium to the Exclusive Economic Zone of New Zealand; it differs from the original description in body thickness(30-38 ㎛ vs. 40-62 ㎛). Vasostoma brevispicula Huang & Wu, 2011, originally described from the subtidal muddy sediment in the Yellow Sea, China, is newly reported in Korea; apart from a few minor morphological differences, body length and thickness (2009-2425 ㎛ vs. 2119-2906 ㎛, 41-48 ㎛ vs. 37-58 ㎛). The present study on unrecorded species improves our understanding of nematode species diversity in Korean waters.

Atmospheric Analysis on the Meteo-tsunami Case Occurred on 31 March 2007 at the Yellow Sea of South Korea (2007년 3월 31일 서해에서 발생한 기상해일에 대한 기상학적 분석)

  • Kim, Hyunsu;Kim, Yoo-Keun;Woo, Seung-Buhm;Kim, Myung-Seok
    • Journal of Environmental Science International
    • /
    • v.23 no.12
    • /
    • pp.1999-2014
    • /
    • 2014
  • A meteo-tsunami occurred along the coastline of South Korea on 31 March 2007, with an estimated maximum amplitude of 240 cm in Yeonggwang (YG). In this study, we investigated the synoptic weather systems around the Yellow sea including the Bohai Bay and Shandong Peninsula using a weather research and forecast model and weather charts of the surface pressure level, upper pressure level and auxiliary analysis. We found that 4-lows passed through the Yellow sea from the Shandung Peninsula to Korea during 5 days. Moreover, the passage of the cold front and the locally heavy rain with a sudden pressure change may make the resonance response in the near-shore and ocean with a regular time-lag. The sea-level pressure disturbance and absolute vorticity in 500 hPa projected over the Yellow sea was propagated with a similar velocity to the coastline of South Korea at the time that meteo-tsunami occurred.

DISTRIBUTION CHARACTERISTICS OF NUTRIENTS IN CHINESE BOHAI SEA

  • Li, Zhengyan;Gao, Huiwang;Bai, Jie;Shi, Jinhui
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2001.11a
    • /
    • pp.19-29
    • /
    • 2001
  • Nutrients are key environmental factors in marine ecosystem. They limit algal growth when at low concentrations and cause algal bloom when at high contents. They also control the growth and succession of many other biota including bacteria and zooplankton, either directly or indirectly. Nutrient contents therefore affect both the structure and functions of marine ecosystem. To study the contents and distribution of nutrients in Chinese Bohai Sea, two cruise surveys were undertaken in August 2000 (summer) and January 2001 (winter), respectively. A total of 595 water samples were collected from 91 sites. After collection the samples were transported to the laboratory and five nutrients, i.e., nitrate, nitrite, ammonia, phosphate and silicate, were analyzed. The results showed that tile average concentration of total inorganic nitrogen (TIN) in Bohai Sea in winter (6.5293.717 ${\mu}$mol$.$l$\^$-1/) was significantly higher than that in summer (3.717 ${\mu}$mol$.$l$\^$-1/). The phosphorus concentration in winter (0.660 ${\mu}$mol$.$l$\^$-1/) was also significantly higher than that in summer (0.329 ${\mu}$mol$.$l$\^$-1/). Mean silicate concentration in winter (7.858 ${\mu}$mol$.$l$\^$-1/) was not significantly different from that in summer (7.200 ${\mu}$mol$.$l$\^$-1/). Nutrients also varied considerable among different areas within Bohai Sea. TIN concentration in Laizhou Bay (4.444 ${\mu}$mol$.$l$\^$-1/), for example, was significantly higher than those in Bohai Bay (2.270 ${\mu}$mol$.$l$\^$-1/) and Bohai Straight (2.431 ${\mu}$mol$.$l$\^$-1/), which probably reflects tile discharge of large amounts of nitrogen into Laizhou Bay via Yellow River. The nutrients also showed vertical distribution pattern. In summer, nutrients in bottom layer were generally higher than those in surface and medium layers. In winter, however. nutrients in different layers were not significantly different Compared with historic data, TIN contents increased continuously since early 1980s, phosphorus arid silicone contents, nevertheless, fell down to some degree. Based on atomic ratios of different nutrients, nitrogen is still the main limiting factor for algal growth in Bohai Sea.

  • PDF

The Role of the Sedimentary Deposits (silt line) from Rivers Flowing into the Sea in the Yellow Sea Maritime Boundary (강의 퇴적물과 황해 경계획정 적용가능성에 관한 연구)

  • Yang, Hee-Cheol
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.31-50
    • /
    • 2009
  • The demarcation of Maritime Boundary is directly related to the expansion of jurisdiction and the securing of resources. Resource diplomacies of the three countries Korea, China and Japan represent a major task for the national administrations : to secure resources as well as to stablize and sustain resources for future national economies. At the sea area around Korea as well, countries are fiercely competing to secure resources and to expand jurisdiction. This is evidenced by the fact that various principles and logics which are beneficial to each own country are presented through international precedents, agreement between countries and the theories of the international law scholars. They say that the conclusion of demarcation of maritime boundary for the Yellow Sea would be easy from the point that there is no dispute related to island dominion in the waters of the Korean Peninsula especially the Yellow Sea, but still we need to have a strategic approach to this issue from the point that the factors used for claiming maritime boundaries may expand the waters of a country over much. For example, the continental shelf boundary in consideration of the distribution of sedimentary deposits in the Yellow Sea which is being raised by China began from the hypothesis that the inflow of sedimentary deposits to the Yellow Sea through the rivers of China represents absolute majority, but the results of the latest studies raised questions on the hypothesis. Especially, the studies done by Martin and Yang revealed that the inflow of sedimentary deposits to the Yellow Sea from the Yellow River is approximately less than 1% of total sedimentary deposits in the Yellow Sea, and also the result of analysis on the causes and counter policy measures on the environment of Bohai, China supports the reliability of the results of such studies. From a legal aspect, the sedimentary deposits of rivers which are claimed by China represent extremely weak ground for the claim for the title of the continental shelf. The siltline claimed by China seems to be based on the Article 76-4-(a)(i) of UNCLOS. This is, however, not the definition on the title of the continental shelf but it is only a technical formula to utilize in a case where a country desires to expand the continental shelf to over 200 nautical miles. Scientific and Technical Guidelines of the Commission on the Limits of the Continental Shelf also confirm this point through the Article 2.1.2 of the Guideline. The only case in which sedimentary deposits of rivers were referred to as concrete demarcation of maritime boundary was in the which was concluded in 1986 between India and Myanmar at the Andaman Sea. In the said case, India acknowledged the boundary up to the isobath of 200m which Myanmar claimed based on the sedimentary deposits of the Irrawaddy River. It has limits as a case for acknowledging the sedimentary deposits, however, because in fact India's acknowledgment was made in exchange for the condition that Myanmar gave up the dominion of two islands which they had been claiming from India up until that time.

Stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas (황해 및 인접 지역 퇴적분지들의 구조적 진화에 따른 층서)

  • Ryo In Chang;Kim Boo Yang;Kwak won Jun;Kim Gi Hyoun;Park Se Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.8 no.1_2 s.9
    • /
    • pp.1-43
    • /
    • 2000
  • A comparison study for understanding a stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas was carried out by using an integrated stratigraphic technology. As an interim result, we propose a stratigraphic framework that allows temporal and spatial correlation of the sedimentary successions in the basins. This stratigraphic framework will use as a new stratigraphic paradigm for hydrocarbon exploration in the Yellow Sea and adjacent areas. Integrated stratigraphic analysis in conjunction with sequence-keyed biostratigraphy allows us to define nine stratigraphic units in the basins: Cambro-Ordovician, Carboniferous-Triassic, early to middle Jurassic, late Jurassic-early Cretaceous, late Cretaceous, Paleocene-Eocene, Oligocene, early Miocene, and middle Miocene-Pliocene. They are tectono-stratigraphic units that provide time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of sedimentary basins in the Yellow Sea and adjacent area. In the Paleozoic, the South Yellow Sea basin was initiated as a marginal sag basin in the northern margin of the South China Block. Siliciclastic and carbonate sediments were deposited in the basin, showing cyclic fashions due to relative sea-level fluctuations. During the Devonian, however, the basin was once uplifted and deformed due to the Caledonian Orogeny, which resulted in an unconformity between the Cambro-Ordovician and the Carboniferous-Triassic units. The second orogenic event, Indosinian Orogeny, occurred in the late Permian-late Triassic, when the North China block began to collide with the South China block. Collision of the North and South China blocks produced the Qinling-Dabie-Sulu-Imjin foldbelts and led to the uplift and deformation of the Paleozoic strata. Subsequent rapid subsidence of the foreland parallel to the foldbelts formed the Bohai and the West Korean Bay basins where infilled with the early to middle Jurassic molasse sediments. Also Piggyback basins locally developed along the thrust. The later intensive Yanshanian (first) Orogeny modified these foreland and Piggyback basins in the late Jurassic. The South Yellow Sea basin, however, was likely to be a continental interior sag basin during the early to middle Jurassic. The early to middle Jurassic unit in the South Yellow Sea basin is characterized by fluvial to lacustrine sandstone and shale with a thick basal quartz conglomerate that contains well-sorted and well-rounded gravels. Meanwhile, the Tan-Lu fault system underwent a sinistrai strike-slip wrench movement in the late Triassic and continued into the Jurassic and Cretaceous until the early Tertiary. In the late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of the Tan-Lu fault until the late Eocene caused a megashear in the South Yellow Sea basin, forming a large-scale pull-apart basin. However, the Bohai basin was uplifted and severely modified during this period. h pronounced Yanshanian Orogeny (second and third) was marked by the unconformity between the early Cretaceous and late Eocene in the Bohai basin. In the late Eocene, the Indian Plate began to collide with the Eurasian Plate, forming a megasuture zone. This orogenic event, namely the Himalayan Orogeny, was probably responsible for the change of motion of the Tan-Lu fault system from left-lateral to right-lateral. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the South Yellow Sea basin and the pull-apart opening of the Bohai basin. Thus, the Oligocene was the main period of sedimentation in the Bohai basin as well as severe tectonic modification of the South Yellow Sea basin. After the Oligocene, the Yellow Sea and Bohai basins have maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basins.

  • PDF

On Climatic Characteristics in the East Asian Seas by satellite data(NOAA, Topex/Poseidon) (위성자료(NOAA, Topex/Poseidon)를 이용한 한반도 주변해역의 기후적 특성 연구)

  • 윤홍주;김상우;이문옥;박일흠
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.290-294
    • /
    • 2001
  • Satellite data, with Sea Surface Temperature(SST) by NOAA and Sea Level(SL) by Topex/poseidon, are used to estimate characteristics on the variations and correlations of SST and SL in the East Asian Seas from January 1993 through May 1998. In the oceanic climate, the variations of SL shown the high values in the main current of Kuroshio and the variations of SST shown not the remarkable seasonal variations because of the continuos compensation of warm current by Kuroshio. In the continental climate, SL shown high variations in the estuaries(the Yellow River, the Yangtze River) with the mixing the fresh water in the mouth of estuaries of the saline water in the coasts of continent and SST shown highly the seasonal variations due to the climatic effect of continents. In the steric variations in summer, the eastern sea of Japan, the East China Sea and the western sea of Korea shown the increment of sea level with 10~20cm. But the Bohai bay in China shown relatively the high values of 20~30cm due to the continental climate. Generally the trends of SST and SL increased during all periods. That is say, the slopes of SST and SL presented 0.29$^{\circ}C$/year and 0.84cm/year, respectively. The annual and semi-annual amplitudes shown a remarkable variations in the western sea of Korea and the eastern sea of Japan.

  • PDF

Prospects for Building a Legal System for Marine Environment Protection in China (중국의 해양환경법제 분석과 전개방향에 관한 고찰)

  • Yang, Hee-Cheol;Park, Seong-Wook;Park, Su-Jin;Kwon, Suk-Jae
    • Ocean and Polar Research
    • /
    • v.30 no.1
    • /
    • pp.89-107
    • /
    • 2008
  • Marine environment is subject serious destruction because of frequent accidents during exploration of marine resources and overseas transport. Also, as many industrial enterprises discharge high volume of wastes and contamination, marine pollution has become a serious threat to people (especially in China). China is quickly becoming a world economic leader of the 21st century. Rapid industrialization and social changes have raised the standard of living of millions of the Chinese, mainly in the areas of East and South East coast. The process of industrialization, however, is often followed by deterioration of the marine environment and rarely turned around until a country has increased its standard of living. Solving these array of problems will take decades and currently the government is addressing minor specific issues only. Fortunately, the Chinese government has enacted a number of marine pollution control laws. On 25 December 1999, the 13th Session of the Ninth Standing Commettee of the National People's Congress passed the amended the Marine Environment Protection Law of the People's Republic of China. This Law establishes rights and responsibilities of the relevant departments concerning marine environment management and provides for two new chapters on "Marine Environment Supervision" and "Marine Ecological Protection", along with "Supervision of Pollution Prevention for Marine Construction Projects", "Marine Ecological Protection" and "Marine Environment Pollution Prevention for Marine Construction Projects". Also, the Law was amended with provisions for integrated pollution discharge control system and oil spillage emergency response plan and enhanced legal responsibilities. Chinese government recognizes that international and national experience can be useful for China to prevent further ecological degradation of the marine environment.