• Title/Summary/Keyword: Boesenbergia rotunda

Search Result 4, Processing Time 0.017 seconds

Neuroprotective Activity of Boesenbergia rotunda Against Glutamate Induced Oxidative Stress in HT22 Cells (글루타메이트에 의해 산화적 스트레스를 받은 HT22 세포에서 핑거루트의 신경세포 보호활성)

  • Kim, Eun Seo;Ma, Choong Je
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.2
    • /
    • pp.79-86
    • /
    • 2022
  • Excessive glutamate causes oxidative stress in neuronal cells, which can cause degenerative neurological disorders. We tried to find medicinal plant showed neuroprotective activity by using glutamate-injured HT22 cell as a model system. In this study, we found that Boesenbergia rotunda methanol extract showed neuroprotective activity against glutamate induced neurotoxicity in mouse hippocampal HT22 cells. B. rotunda methanol extract suppressed the formation of reactive oxygen species and decreased intracellular Ca2+concentration. Also, B. rotunda made mitochondrial membrane potential maintain to normal levels. In addition, B. rotunda increased total glutathione amount and activated antioxidative enzyme such as glutathione reductase and glutathione peroxidase compared to glutamate-treated groups. These results suggested that B. rotunda decreased neuronal cell death damaged by high concentrations of glutamate treatment, via antioxidative mechanism and might be one of candidate of development of new drug to treat neurodegenerative disease such as Alzheimer's disease.

Genetic Variation and Species Identification of Thai Boesenbergia (Zingiberaceae) Analyzed by Chloroplast DNA Polymorphism

  • Techaprasan, Jiranan;Ngamriabsakul, Chatchai;Klinbunga, Sirawut;Chusacultanachai, Sudsanguan;Jenjittikul, Thaya
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.361-370
    • /
    • 2006
  • Genetic variation and molecular phylogeny of 22 taxa representing 14 extant species and 3 unidentified taxa of Boesenbergia in Thailand and four outgroup species (Cornukaempferia aurantiflora, Hedychium biflorum, Kaempferia parviflora, and Scaphochlamys rubescens) were examined by sequencing of 3 chloroplast (cp) DNA regions (matK, psbA-trnH and petA-psbJ). Low interspecific genetic divergence (0.25-1.74%) were observed in these investigated taxa. The 50% majority-rule consensus tree constructed from combined chloroplast DNA sequences allocated Boesenbergia in this study into 3 different groups. Using psbA-1F/psbA-3R primers, an insertion of 491 bp was observed in B. petiolata. Restriction analysis of the amplicon (380-410 bp) from the remaining species with Rsa I further differentiated Boesenbergia to 2 groupings; I (B. basispicata, B. longiflora, B. longipes, B. plicata, B. pulcherrima, B. tenuispicata, B. thorelii, B. xiphostachya, Boesenbergia sp.1 and Boesenbergia sp.3; phylogenetic clade A) that possesses a Rsa I restriction site and II (B. curtisii, B. regalis, B. rotunda and Boesenbergia sp.2; phylogenetic clade B and B. siamensis; phylogenetic clade C) that lacks a restriction site of Rsa I. Single nucleotide polymorphism (SNP) and indels found can be unambiguously applied to authenticate specie-origin of all investigated samples and revealed that Boesenbergia sp.1, Boesenbergia sp.2 and B. pulcherrima (Mahidol University, Kanchanaburi), B. cf. pulcherrima1 (Prachuap Khiri Khan) and B. cf. pulcherrima2 (Thong Pha Phum, Kanchanaburi) are B. plicata, B. rotunda and B. pulcherrima, respectively. In addition, molecular data also suggested that Boesenbergia sp.3 should be further differentiated from B. longiflora and regarded as a newly unidentified Boesenbergia species.

Cytotoxic Constituents from Boesenbergia pandurate (Roxb.) Schltr

  • Ching, Amy Yap Li;Lian, Gwendoline Ee Cheng;Rahmani, Mawardi;Khalid, Kaida;Sukari, Mohd Aspollah
    • Natural Product Sciences
    • /
    • v.13 no.2
    • /
    • pp.110-113
    • /
    • 2007
  • Five flavonoid derivatives, pinostrobin (1), pinocembrin (2), alpinetin (3), cardamonin (4) and boesenbergin A (5) were isolated from the rhizomes of Boesenbergia pandurata. All compounds were elucidated based on its spectroscopic data and by the comparison with the previous works. 2D NMR technique was used for the structure elucidation of boesenbergin A to complement the data reported previously. The extracts and pure compounds were screened for cytotoxic activity against HL-60 cancer cell lines (human promyelocytic leukemia). Cytotoxic screening showed most of the extracts and pure compounds isolated from the rhizomes of Boesenbergia pandurata were active against HL-60 cancer cell line. The chloroform extract and boesenbergin A showed the most potent cytotoxic activity.

Effects of herbal mixture on blood glucose and lipid metabolism in type 2 diabetic mellitus mouse (천연물 복합제가 제 2형 당뇨 마우스에서 혈당 및 지질대사에 미치는 영향)

  • Seo, Dong-hyo;Joo, In-Hwan;Kim, Dong-Hee
    • Journal of Haehwa Medicine
    • /
    • v.29 no.2
    • /
    • pp.22-29
    • /
    • 2020
  • Objectives: This study aims to investigate the effects of diabetes mellitus care mixture (DCM) on blood glucose and lipid metabolism in type 2 diabetic mellitus mice. DCM consisted of lagerstroemia speciose, allium hookeri, momordica charantia, amaranthus tricolor, and boesenbergia rotunda, which have been proven to have antidiabetic properties. Methods: In this study, we researched the effects of DCM in type 2 diabetic mellitus mice. C57BLKS/J mouse groups had no treatment, db/db mouse randomly assigned to 2 groups, and treated with distilled water and DCM (200 mg/kg/day). Blood glucose levels and body weight were checked every week. After 4 weeks of treatment, liver function indicators (AST, ALT, and LDH) and lipid metabolites (triglyceride, total cholesterol, LDL-cholesterol, HDL-cholesterol) were measured with a biochemistry analyzer. Diabetic factors (insulin, resistin, and leptin) were measured with ELISA. Results: DCM was decreased blood glucose, diabetic factors, liver function indicators, triglyceride, total cholesterol, and LDL-cholesterol significantly. Also, HDL-cholesterol was significantly increased in DCM group. The bodyweight of DCM group decreased but, no significant difference with the control group. DCM may have the potential to improved diabetes mellitus by regulating blood glucose levels and diabetic factors. Also protecting from diabetic complications by adjusting liver function indicators and lipid metabolites. Conclusions: These results suggest that DCM to be used as an oriental medicine for diabetes, the results of clinical trials are needed.