• Title/Summary/Keyword: Body network

Search Result 745, Processing Time 0.024 seconds

UWB based MODEM Technology and RFIC Property Overview for Wireless Human Body Communication (인체 무선통신용 소출력 UWB변복조 기술개발 및 RFIC화에 관한 연구)

  • Cha, Jae-Sang;Kim, Eun-Cheol;Kim, Jin-Young;Kim, Jai-Hyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.133-138
    • /
    • 2009
  • In this paper, we propose a ZCD (Zero Correlation Duration) code based Ultra Wide Band(UWB) MODEM(modulation and demodulation) technique for WBAN as a hunman body wireless communication operating in WBAN (Wireless Body Area Network) environment. We certified ZCD code based UWB schemes are available for hunman body wireless communications by various simulation and performance analysis using WBAN transmission channels. Furthermore, we suggested some possibility of RFIC implementation related to human body based UWB communication module by presenting some related examples.

  • PDF

Hybrid Priority Medium Access Control Scheme for Wireless Body Area Networks (무선 인체통신 네트워크를 위한 복합 우선순위 MAC 기법)

  • Lee, In-Hwan;Lee, Gun-Woo;Cho, Sung-Ho;Choo, Sung-Rae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1305-1313
    • /
    • 2010
  • Last few years, wireless personal area network (WPAN) has been widely researched for various healthcare applications. Due to restriction of device hardware (e.g., energy and memory), we need to design a highly-versatile MAC layer protocol for WBAN (Wireless Body Area Network). In addition, when an emergency occurs to a patient, a priority mechanism is necessitated for a urgent message to get through to the final destination. This paper presents a priority mechanism referred to as hybrid priority MAC for WBAN. Through extensive simulation, we show the proposed MAC protocol can minimize the average packet latency for urgent data. Thus, when patients have an emergency situation, our MAC allows adequate assistance time and medical treatment for patients. The simulation based on NS-2 shows that our Hybrid Priority MAC has the good performance and usability.

A Proposal for Improving Techniques of GTS Utilization Based on WBAN (WBAN 기반의 GTS 채널 이용률 향상기법 제안)

  • Park, Joo-Hee;Jung, Won-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.73-81
    • /
    • 2011
  • The WBAN(Wireless Body Area Network) technology is a short distance wireless network which provides each device's interactive communication by connecting devices inside and outside of body located within 3 meters. Standardization on the physical layer, data link layer, network layer and application layer is in progress by IEEE 802.15.6 TG BAN. The The WBAN servides consists of both medical and non-medical applications. The medical application service uses the sensor that transfer the periodic traffic and have different data rates. It uses GTS method to guarantee QoS. In this paper, a new method is proposed, which are suitable design for MAC Protocol. Firstly, MAC frame structure and a primitive based on the WBAN are proposed. Secondly, we proposed the GTS algorithm improved the channel utilization based on the WFQ(Weighted Fair Queuing). The proposed scheduling method is improved channel utilization compared with i-Game(Round Robin scheduling method).

Enhanced Secure Sensor Association and Key Management in Wireless Body Area Networks

  • Shen, Jian;Tan, Haowen;Moh, Sangman;Chung, Ilyong;Liu, Qi;Sun, Xingming
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.453-462
    • /
    • 2015
  • Body area networks (BANs) have emerged as an enabling technique for e-healthcare systems, which can be used to continuously and remotely monitor patients' health. In BANs, the data of a patient's vital body functions and movements can be collected by small wearable or implantable sensors and sent using shortrange wireless communication techniques. Due to the shared wireless medium between the sensors in BANs, it may be possible to have malicious attacks on e-healthcare systems. The security and privacy issues of BANs are becoming more and more important. To provide secure and correct association of a group of sensors with a patient and satisfy the requirements of data confidentiality and integrity in BANs, we propose a novel enhanced secure sensor association and key management protocol based on elliptic curve cryptography and hash chains. The authentication procedure and group key generation are very simple and efficient. Therefore, our protocol can be easily implemented in the power and resource constrained sensor nodes in BANs. From a comparison of results, furthermore, we can conclude that the proposed protocol dramatically reduces the computation and communication cost for the authentication and key derivation compared with previous protocols. We believe that our protocol is attractive in the application of BANs.

Traffic Adaptive Transmission Algorithm for Energy Efficiency in WBAN (WBAN 환경에서 에너지 효율을 고려한 트래픽 적응형 전송 알고리즘)

  • Kim, Jinhyuk;Hong, Changki;Choi, Sangbang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.5
    • /
    • pp.315-327
    • /
    • 2013
  • Wireless Body Area Network (WBAN) is a network around a human body within 3~5m which consists of medical or non-medical device. WBAN has to satisfy many kinds of demands such as low-power, a variety of data rate and a data priority. Especially, it is hard for the nodes for monitoring vital signs to replace battery. Thus energy and channel efficiency is important because the battery power is limited. In this thesis, a novel algorithm for reducing the energy consumption is proposed. The proposed algorithm adjusts transmission period according to traffic. by means of determining transmission period by amount of data, the node can reduce energy consumption. Energy detection is performed in order to guarantee data priority before attempting to transmit. In case of failing to transmit, it is proposed that energy consumption is reduced through avoiding collision by changing priority. The comparison result shows that the proposed algorithm reduces power consumption and increasing maximum channel efficiency by avoiding collision.

Implementation of Medical Care System based on Home Network (홈 네트워크 방식의 헬스 케어 시스템 구현)

  • Kim, Jeong-Lae;Lee, Woo-Chul;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.987-991
    • /
    • 2011
  • In this paper, a health care system is implemented which can identify the parameter for moving body after exercising based on home network. This system has catched a signal for physical condition of body data using data acquisition mechanism such as a data acquisition module, a data signal processing module and a feedback module. The composition has a functions of displacement point for a BMI and WDI, that the basic parameter measure to base on the heart rate, temperature. There are checked physical condition of body exercising to compounded a physical condition of sensory organ. There are to keep the lookout for the body condition that to estimate a health care with a physical organ through a exercise.

Efficient Interference Cancellation Scheme for Wireless Body Area Network

  • Bae, Jung-Nam;Choi, Young-Hoon;Kim, Jin-Young;Kwon, Jang-Woo;Kim, Dong-In
    • Journal of Communications and Networks
    • /
    • v.13 no.2
    • /
    • pp.167-174
    • /
    • 2011
  • In this paper, we propose and simulate an efficient interference cancellation scheme with an optimal ordering successive interference cancellation (SIC) algorithm for ultra wideband (UWB)/multiple-input-multiple-output (MIMO) systems in a wireless body area network (WBAN). When there are several wireless communication devices on a human body, multiple access interference (MAI) usually occurs. To mitigate the effect of MAI and achieve additional diversity gain, we utilize SIC with an optimal ordering algorithm. A zero correlation duration (ZCD) code with robust MAI capability is employed as a spread code for UWB systems in a multi-device WBAN environment. The performance of the proposed scheme is evaluated in terms of the bit error rate (BER). Simulation results confirm that the BER performance can be improved significantly if the proposed interference cancellation scheme and the ZCD code are jointly employed.

Design of U-Healthcare Monitoring System based on Mobile Device (모바일 디바이스 기반의 U-헬스케어 모니터링 시스템 구현)

  • Park, Joo-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.1
    • /
    • pp.46-53
    • /
    • 2012
  • The WBAN technology means a short distance wireless network which provides each device's interactive communication by connecting devices inside and outside of body located within 3 meters. Standardization on the physical layer, data link layer, network layer and application layer is in progress by IEEE 802.15.6 TG BAN. It is necessary to develop the WBAN core technology that sensor node device, WBAN middleware and WBAN application service for WBAN environment. In this paper we designed the medical message structure and implemented medical application for purpose of vital information reliability. The message structure was proposed for WBAN environment and application can be check biometric information from BN on smart device through WBAN gateway.

Medical BAN 기술 동향

  • Lee, Hyeong-Su
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.104-109
    • /
    • 2008
  • MBAN(Medical Wireless Body Area Network)은 인체 내부에 이식한 장비를 인체 외부에서 모니터링하는 인체 이식형 의료 분야와 인체 표면이나 $3{\sim}5$미터내 인체의 주변에서 일어나는 신체 부착형 의료분야로 정의할 수 있다. 본 고에서는 기존 MBAN으로 사용하고 있던 무선장비들에 대한 각국의 기술 개발 동향을 분석하였으며, 인체 내부와 외부에서의 가장 큰 특성인 인체 전파 특성에 대해서도 분석해 보았다. 그리고 IEEE에서 표준화 작업중인 WBAN(Wireless Body Area Network)의 개념과 추진 상황과 더불어 현재 검토 중인 주파수 대역에 대해서 분석하였다.

Continuous Variable을 갖는 Mean Field Annealing과 그 응용

  • Lee, Gyeong-Hui;Jo, Gwang-Su;Lee, Won-Don
    • ETRI Journal
    • /
    • v.14 no.3
    • /
    • pp.67-74
    • /
    • 1992
  • Discrete variable을 갖는 Mean Field Theory(MFT) neural network은 이미 많은 combinatorial optimization 문제에 적용되어져 왔다. 본 논문에서는 이를 확장하여 continuous variable을 갖는 mean field annealing을 제안하고, 이러한 network에서 integral로 표현되는 spin average를 mean field에 기초하여 어렵지 않게 구할 수 있는 one-variable stochastic simulated annealing을 제안하였다. 이런 방법으로 multi-body problem을 single-body problem으로 바꿀 수 있었다. 또한 이 방법을 이용한 응용으로서 통계학에서 잘 알려진 문제중의 하나인 quantification analysis 문제에 적용하여 타당성을 보였다.

  • PDF