• Title/Summary/Keyword: Body motion

Search Result 2,114, Processing Time 0.026 seconds

A Basic Study on Implementing Optimal Function of Motion Sensor for Bridge Navigational Watch Alarm System

  • Jeong, Tae-Gweon;Bae, Dong-Hyuk
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.645-653
    • /
    • 2014
  • A Bridge Navigational Watch Alarm System (hereafter 'BNWAS') is to monitor and detect if an officer of watch(hereafter 'OOW') keeps a sharp lookout on the bridge. The careless lookout of an OOW could lead to marine accidents. For this reason on June 5th, 2009, IMO decided that a ship is equipped with a BNWAS. However, an existing BNWAS gives the OOW a lot of inconvenience and stress in its operation. It requires that the OOW should press reset buttons to confirm their alert watch on the bridge at every three to twelve minute. Many OOWs have complained that at some circumstances they cannot focus on their bridge activities including watch-keeping due to a lots of resetting inputs of BNWAS. Accordingly, IMO has allowed the use of a motion sensor as a resetting device. The motion sensor detects the movements of human body on the bridge and subsequently sends reset signals directly to BNWAS automatically. As a result, OOWs can work uninterrupted. However, some of classification societies and flag authorities have a slightly different stance on the use of motion sensor as a resetting method for BNWAS. The reason is that the motion sensor may trigger false reset signals caused by the motion of objects on the bridge, especially a slight movement such as toss and turn of human body which can extend the period of careless watch. As a basic study to minimize the false reset signals, this paper proposes a simple configuration of BNWAS, which consists of only three motion sensors associated with 'AND' and 'OR' logic gates. Additionally, several considerations are also proposed for the implementation of motion sensors. This study found that the proposed configuration which consists of three motion sensors is better than an existing one by reducing false reset signals caused by a slight movement of human body in one's sleep. The proposed configuration in this paper filters false reset signals and is simple to be implemented on existing vessels. In addition, it can be easily installed just by a basic electrical knowledge.

Experimental and Numerical Study on the Characteristics of Free Surface Waves by the Movement of a Circular Cylinder-Shaped Submerged Body in a Single Fluid Layer

  • Jun-Beom Kim;Eun-Hong Min;Weoncheol Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.89-98
    • /
    • 2023
  • Analyzing the interactions of free surface waves caused by a submerged-body movement is important as a fundamental study of submerged-body motion. In this study, a two-dimensional mini-towing tank was used to tow an underwater body for analyzing the generation and propagation characteristics of free surface waves. The magnitude of the maximum wave height generated by the underwater body motion increased with the body velocity at shallow submerged depths but did not increase further when the generated wave steepness corresponded to a breaking wave condition. Long-period waves were generated in the forward direction as the body moved initially, and then short-period waves were measured when the body moved at a constant velocity. In numerical simulations based on potential flow, the fluid pressure changes caused by the submerged-body motion were implemented, and the maximum wave height was accurately predicted; however, the complex physical phenomena caused by fluid viscosity and wave breaking in the downstream direction were difficult to implement. This research provides a fundamental understanding of the changes in the free surface caused by a moving underwater body.

Kinematic Analysis of the Linking Motion from the Swallow Skill to the Nakayama Skill on the Rings (링의 스왈로에서 나까야마 기술로의 연결 동작에 대한 운동학적 분석)

  • Chung, Nam-Ju
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.1-14
    • /
    • 2004
  • This study was intended to contribute to allowing athletes to raise a technical understanding of two motions of high difficulty such as the Swallow motion and the Nakayama motion and enhance their competitive power by analysing the kinematical factors required to link those two motions on the competitive scene on the rings for current national athletes. For this purpose, the game of the ring event was videotaped for male heavy gymnasts participating in the final elimination match of the 2004 Athens Olympic Games. This study attempted to select the performing motions of the final 1st-and 2nd-place athletes performing the linking motions from the Swallow motion and the Nakayama motion using the DLT(direct linear transformation) method. As a result, it arrived at the following conclusion : A1 properly performed the flexing and extending movements using the angular velocity of the segment and joint as the switching motion using the body at the time of linking the motion from the Swallow skill to the Nakayama skill. A2 was evaluated to perform the skill taking the form of depending on the force at the static state. Therefore, it is thought that A1 should take care of shaking at the time of using the elasticity of the body. It is thought that in case of A2 the proper use of the elasticity of the body take care of shaking at the switching motion while taking advantage of the force will contribute to his competitive power.

A Structural Analysis on the Leaflet Motion Induced by the Blood Flow for Design of a Bileaflet Mechanical Heart Valve Prosthesis

  • Kwon, Young-Joo;Kim, Chang-Nyung;Lee, Jae-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1316-1323
    • /
    • 2003
  • This paper presents a structural analysis on the rigid and deformed motion of the leaflet induced by the blood flow required in the design of a bileaflet mechanical heart valve (MHV) prosthesis. In the study on the design and the mechanical characteristics of a bileaflet mechanical heart valve, the fluid mechanics analysis on the blood flow passing through leaflets, the kinetodynamics analysis on the rigid body motion of the leaflet induced by the pulsatile blood flow, and the structural mechanics analysis on the deformed motion of the leaflet are required sequentially and simultaneously. Fluid forces computed in the previous hemodynamics analysis on the blood flow are used in the kinetodynamics analysis on the rigid body motion of the leaflet. Thereafter, the structural mechanics analysis on the deformed motion of the leaflet follows to predict the structural strength variation of the leaflet as the leaflet thickness changes. Analysis results show that structural deformations and stresses increase as the fluid pressure increases and the leaflet thickness decreases. Analysis results also show that the leaflet becomes structurally weaker and weaker as the leaflet thickness becomes smaller than 0.6 mm.

A Study on the Lower Body Range of Motion(Using a 3-D Motion Analysis System) about Korean Adults (한국성인 남자의 하체 동작범위 연구 - 3D 동작분석 장치를 이용하여 -)

  • 류신아;박길순
    • The Research Journal of the Costume Culture
    • /
    • v.8 no.5
    • /
    • pp.741-753
    • /
    • 2000
  • The purpose of this study : 1. The total 24 range measurements of active dynamic motion of 40 subjects(20's and 30's, and 40's∼60's) using previous studies. The results were compared with the other studies in the aspects of age. In this study, The 3-D motion analysis system consists of VICON 140, data acquisition system, and data analysis program called by KRISSMAS. VICON 140 is dynamic motion analyzer, and KRISSMAS is a program developed for analysis of the data captured from the VICON. The results of this study were as follows : 1. Comparing 20's∼30's and 40's∼60's the result shows that 40's∼60's have smaller ROM at the most joints(Thoratic and Lumber, Hip Joint, Knee Joint, Ankle Joint), which is inconsistent with the previous result. The reason is that most investigations were carried out using traditional measurement equipments, which have encountered difficulty in quantifying the exact motion of the body. 2. There are no significant mean difference between the right and the left side. Most of the significances were not high(〉0.05).

  • PDF

Analysis on Dynamic Motion of Robotic Arm and Body Mechanism (로봇 팔 및 몸체 메커니즘의 동적 운동특성 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.774-779
    • /
    • 2010
  • This paper analyzes the fundamental dynamic motion of a robotic arm and body mechanism on the platform of a mobile manipulation system. For the purpose, we reveal the dynamic coefficients of a robotic arm and body mechanism, and identify their dominant behaviors in an exemplar trajectory following simulation. We also discuss on their influence for the motion of the body, shoulder, and elbow joints. It is finally expected that this analysis is helpful for effective manipulation tasks by using mobile manipulation systems with an arm and body mechanism.

Design and Analysis of a Linear Feeder using Computer Simulation (컴퓨터 시뮬레이션을 이용한 리니어 피더의 설계 및 분석)

  • Lee, Kyu-Ho;Kim, Sung-Hyun;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.749-753
    • /
    • 2007
  • The purpose of this study is to design of a linear feeder using a multi body dynamic program, and to analyze a dynamic motion of the feeder that can transport small mechanical parts uniformly. In order to establish the analysis model of the linear feeder, each parts of the feeder are divided into two types which the rigid and flexible body. For the dynamic simulation, RecurDyn, which is a commercial multi-body dynamic package, is used. We also consider the design parameters for optimal dynamic motion such as centroid, stiffness, and mass of the feeder system. In order to analyze the dynamic motion of a linear feeder, the displacements of the feeder are measured by several accelerometers when it is in an operating condition. After the signal data from the accelerometers are captured in the time domain, the dynamic motion in the space is visualized by using graphic computer software.

  • PDF

A Numerical Simulation for the Propulsion of Axisymmetric Micro-Hydro-Machine by Contractive and Dilative Motion (수축팽창 운동에 의한 축대칭 마이크로-하이드로-머신의 추진을 위한 수치 시뮬레이션)

  • Kim Moon-Chan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.30-37
    • /
    • 2001
  • A Numerical simulation for the propulsion of axisymmetric body by contractive and dilative motion is carried out. The present analysis shows that a propulsive force can be obtained in highly viscous fluid by a contractive and dilative motion of axisymmetric body. An axisymmetric analysis code is developed with unstructured grid system for the simulation of complicated motion and geometry. The developed code is validated by comparing with the results of stokes approximation with the problem of uniform flow past a sphere in low Reynolds number($R_n=1$). The validated code is applied to the simulation of contractive and dilative motion of body. The simulation is extended to the analysis of waving surface with projecting part for finding out the difference of hydrodynamic performance according to the variation of waving surface configuration. The present study will be the basic research for the development of the propulsor of an axisymmetric micro-hydro-machine.

  • PDF

Feature Extraction Based on Hybrid Skeleton for Human-Robot Interaction (휴먼-로봇 인터액션을 위한 하이브리드 스켈레톤 특징점 추출)

  • Joo, Young-Hoon;So, Jea-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.178-183
    • /
    • 2008
  • Human motion analysis is researched as a new method for human-robot interaction (HRI) because it concerns with the key techniques of HRI such as motion tracking and pose recognition. To analysis human motion, extracting features of human body from sequential images plays an important role. After finding the silhouette of human body from the sequential images obtained by CCD color camera, the skeleton model is frequently used in order to represent the human motion. In this paper, using the silhouette of human body, we propose the feature extraction method based on hybrid skeleton for detecting human motion. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

Strongly coupled partitioned six degree-of-freedom rigid body motion solver with Aitken's dynamic under-relaxation

  • Chow, Jeng Hei;Ng, E.Y.K.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.320-329
    • /
    • 2016
  • An implicit method of solving the six degree-of-freedom rigid body motion equations based on the second order Adams-Bashforth-Moulten method was utilised as an improvement over the leapfrog scheme by making modifications to the rigid body motion solver libraries directly. The implementation will depend on predictor-corrector steps still residing within the hybrid Pressure Implicit with Splitting of Operators - Semi-Implicit Method for Pressure Linked Equations (PIMPLE) outer corrector loops to ensure strong coupling between fluid and motion. Aitken's under-relaxation is also introduced in this study to optimise the convergence rate and stability of the coupled solver. The resulting coupled solver ran on a free floating object tutorial test case when converged matches the original solver. It further allows a varying 70%-80% reduction in simulation times compared using a fixed under-relaxation to achieve the required stability.