• Title/Summary/Keyword: Body cavity fluid

Search Result 36, Processing Time 0.029 seconds

The Cytopathology of Body Cavity Fluid (체강액의 세포학)

  • Hong, Eun-Kyung
    • The Korean Journal of Cytopathology
    • /
    • v.19 no.2
    • /
    • pp.72-85
    • /
    • 2008
  • Cytologic examination of the body cavity fluid is very important because the specimens represent a significant percentage of nongynecologic samples and this cytologic examination may be the first, best or only chance for making the diagnosis of an underlying malignancy. The purposes of body cavity fluid examination are to correctly identify cancer cells and if possible, to identify the tumor types and primary sites when presented with unknown primary tumor sites. The most important basic differential diagnosis is that of benign and reactive disease vs malignant disease. Reactive mesothelial cells are a consistent population in body cavity fluid, and these are the most versatile cells in the body. Due to the specific environment of the body cavity, the exfoliated reactive mesothelial cells may show significant morphologic overlap with the morphology of cancer cells. With a focus on the differential points between reactive mesothelial cells and metastatic adenocarcinoma cells, the practical diagnostic approaches, the diagnostic clues and the pitfalls to achieve a correct diagnosis are presented in this review.

Effect of a Centered Conducting Body on Natural Convection Heat Transfer in a Two-Dimensional Cavity (2차원 캐비티내 자연대류 열전달에 대한 열전도 물체의 영향)

  • Myong H. K.;Kim J. E.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.79-84
    • /
    • 2005
  • The numerical solutions are examined on the effect of a centered heat conducting body on natural convection in a 2-D square cavity. The influences of the Rayleigh number, the dimensionless conducting body size, and the ratio of the thermal diffusivity of the body to that of the fluid have been investigated on the natural convection heat transfer in overall concerned region. The analysis reveals that the fluid flow and heat transfer processes are governed by all of them. Results for isotherms, vector plots and wall Nusselt numbers are reported for Pr = 0.71 and relatively wide ranges of the other parameters. Heat transfer across the cavity, in comparison to that in the absence of a body, are enhanced (reduced) in general by a body with a thermal diffusivity ratio less (greater) than unity. The heat transfer are also found to attain a minimum as the body size is increased.

  • PDF

Visualization of ventilated supercavitation phenomena around a moving underwater body (수중 운동체 주변에 형성되는 환기 초공동(ventilated supercavitation) 현상 가시화)

  • Chung, Jaeho;Cho, Yeunwoo
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.1
    • /
    • pp.26-29
    • /
    • 2015
  • A laboratory experiment was carried out to observe and visualize ventilated supercavitation phenomena around a moving underwater body which is attached to a newly designed high-speed (Max. 20 m/s) carriage system in a wave tank. Compared to the existing many other experimental studies using cavitation tunnels, where the body is at rest and the fluid is in motion in a bounded or closed environment, the present experimental study deals with super-cavity formation in unbounded or free-surface bounded environments, where the body is in motion and the fluid is at rest. Main attention is paid to the effective visualization of the steady-state cavity formations around a moving body and, those cavity formations are reported pictorially according to the body speed, ventilated air-pressure, and with or without a cavitator.

Numerical Analysis of the Cavitation Around an Underwater Body with Control Fins (제어핀이 달린 수중 물체의 공동 수치해석)

  • Kim, Hyoung-Tae;Choi, Eun-Ji;Knag, Kyung-Tae;Yoon, Hyun-Gull
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.298-307
    • /
    • 2019
  • The evolution of the cavity and the variation of the drag for an underwater body with control fins are investigated through a numerical analysis of the steady cavitating turbulent flow. The continuity and the steady-state RANS equations are numerically solved using a mixture fluid model for calculating the multiphase turbulent flow of air, water and vapor together with the SST $k-{\omega}$ turbulence model. The method of volume of fluid is applied by the use of the Sauer's cavitation model. Numerical solutions have been obtained for the cavity flow about an underwater body shaped like the Russian high-speed torpedo, Shkval. Results are presented for the cavity shape and the drag of the body under the influence of the gravity and the free surface. The evolution of the cavity with the body speed is discussed and the calculated cavity shapes are compared with the photographs of the cavity taken from an underwater launch experiment. Also the variation of the drag for a wide range of the body speed is investigated and analyzed in details.

NUMERICAL STUDY ON NATURAL CONVECTION HEAT TRANSFER IN A CAVITY CONTAINING A CENTERED HEAT CONDUCTING BODY (열전도 물체가 존재하는 캐비티내 자연대류 열전달에 대한 수치적 연구)

  • Myong H. K.;Chun T. H.
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.36-42
    • /
    • 2005
  • The present study numerically investigates the natural convection heat transfer in a 2-D square cavity containing a centered heat conducting body. Special emphasis is given to the influences of the Rayleigh number, the dimensionless conducting body size, and the ratio of the thermal diffusivity of the body to that of the fluid on the natural convection heat transfer in overall concerned region. The analysis reveals that the fluid flow and heat transfer processes are governed by all of them. Results for isotherms, vector plots and wall Nusselt numbers are reported for Pr = 0.71 and relatively wide ranges of the other parameters. Heat transfer across the cavity, in comparison to that in the absence of a body, are enhanced (reduced) in general by a body with a thermal diffusivity ratio less (greater) than unity. It is also found that the heat transfer attains a minimum as the body size is increased with a thermal diffusivity ratio greater than unity.

p53 Immunoreactivity in the Cytology of Body Cavity Fluid (체강 삼출액의 세포학적 검사에서의 p53 면역염색의 유용성)

  • Sung, Sun-Hee;Han, Woon-Sup
    • The Korean Journal of Cytopathology
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 1998
  • Mutant form of the p53 gene product is abnormally accumulated in the nuclei of the tumor cells due to prolonged half life, and readily detected by immunohistochemical methods. To determine the positivity rate of p53 in body cavity fluid according the primary site and histological types of tumors and the utility of p53 immunostaining as an adjunct in the diagnosis of malignancy, we reviewed 69 effusions, including pleural effusion, ascitic fluid, and pericardial fluid, that were diagnosed as overt malignancy and 21 effusions of suspicious malignancy, immunohistochemistry was performed on paraffin-embedded cell blocks using a monoclonal antibody to p53 supressor gene product(Clone DO7) and a standard avidin-biotin complex technique with a citrate buffer antigen retrieval solution. The results were as follows; of the 46 pleural effusions with overt malignancy, 22 were immunopositive for p53 protein; of the 21 ascitic fluids with overt malignancy, 5 were positive for p53. Positivity rates according to the primary sites of tumors were 18 of 34(52.9%), 8 of 21(38.1%), 1 of 9(11.1%) cases of the tumors of the lung, GI tract, and ovary, respectively. According to the histologic types of lung cancer, 11 cases(61.6%) were positive out of 18 adenocarcinomas, 2 of 5 large cell undifferentiated carcinomas, and 1 of 2 small cell undifferentiated carcinomas. Of 21 cases of suspicious malignancy, 6 were positive for p53 and all of them(6/6) were confirmed as adenocarcinoma of the lung or GI tract. These findings indicate that p53 immunostaining using paraffin embedded cell block is useful diagnostic and prognostic marker in body fluid cytology although negative immunostaining does not exclude malignancy.

  • PDF

A Numerical Study of Effects of Body Shape on Cavity and Drag of Underwater Vehicle (몸체 형상이 수중운동체의 공동 발달과 항력특성에 미치는 영향에 대한 수치적 연구)

  • Kim, Hyoung-Tae;Kang, Kyung-Tae;Choi, Jung-Kyu;Jung, Young-Rae;Kim, Min-Jae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.252-264
    • /
    • 2018
  • The calculation of steady-state cavitating flows around Supercavitating Underwater Bodies (SUB's), which consist of a circular disk head (cavitator), a conical fore-body, a cylindrical middle-body and either a boat-tail or a flare-tail, are carried out. To calculate the axisymmetric cavitating flow, used is a commercial computational fluid dynamics code based on the finite volume method, Fluent. From the analysis of numerical results, the cavity and drag, affected by the fore-body and tail of the SUB's, are investigated. Firstly, the effect of the fore-body shape is investigated with the same disk cavitator and a cylindrical rear-body of fixed diameter. Then with the same cavitator and a fixed fore-body, the effect of the rear-body shape is investigated. Before the cavity generated by the cavitator covers the slant of fore-bodies sufficiently, the larger the cone angle of the fore-body(i.e., the shorter the slant length), the larger the drag and the slower the development of cavity. After the cavity covers the fore-body completely so that the pressure drag component of the body is vanished, the characteristics of drag-velocity curves are identical. Also, as the tail angle is bigger, the cavity generated by the cavitator is suppressed further and the drag becomes larger. The peak of the drag appears for the flare-tail, i.e., when the tail angle is positive(+). On the contrary, the trough of the drag appears for the boat-tail, i.e., when the tail angle is negative(-). When the tail angle is 5 degrees, the peak of the drag appears at the body speed of 80m/s and the value of the drag is 43% larger than that at the design speed of 100m/s. When the tail angle is -5 degrees, the trough of the total drag appears at 75m/s and that drag is 30% smaller than that of the cavitator, which means the rest of the body has a negative drag.

A Numerical Analysis of Gravity and Free Surface Effects on a Two-Dimensional Supercavitating Flow (2차원 초공동 유동의 중력과 자유표면 효과에 대한 수치해석)

  • Kim, Hyoung-Tae;Lee, Hyun-Bae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.435-449
    • /
    • 2014
  • The effects of the gravity field and the free surface on the cavity shape and the drag are investigated through a numerical analysis for the steady supercavitating flow past a simple two-dimensional body underneath the free surface. The continuity and the RANS equations are numerically solved for an incompressible fluid using a $k-{\epsilon}$ turbulence model and a mixture fluid model has been applied for calculating the multiphase flow of air, water and vapor using the method of volume of fluid and the Schnerr-Sauer cavitation model. Numerical solutions have been obtained for the supercavitating flow about a two-dimensional $30^{\circ}$ wedge in wide range of depths of submergence and inflow velocities. The results are presented for the cavity shape, especially the length and the width, and the drag of the wedge in comparison with those of the case for the infinite fluid flow neglecting the gravity and the free surface. The influences of the gravity field and the free surface on the aforementioned quantities are discussed. The length and the width of the supercavity are reduced and the centerline of the cavity rises toward the free surface due to the effects of the gravity field and the free surface. The drag coefficient of the wedge, however, is about the same except for shallow depths of submergence. As the supercavitating wedge is approaching very close to the free surface, it is found the length and the width of a cavity are shorten even though the cavitation number is reduced. Also the present result suggests that, under the influence of the gravity field and the free surface, the length of the supercavity for a certain cavitation number varies and moreover is proportional to the inverse of the submergence depth Froude number.

A Study on the Flow Analysis for Natural Convection of Magnetic Fluid in a Cubic Cavity (밀폐공간내 자성유체의 유동특성에 관한 연구)

  • Ryu, Shin-Oh;Park, Joung-Woo;Seo, Lee-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.142-147
    • /
    • 2001
  • Natural convection of a magnetic fluid is different from that of Newtonian fluids because magnetic body force exists in an addition to gravity and buoyancy. In this paper, natural convection of a magnetic fluids(W-40) in a cubic cavity is examined by numerical and experimental method. One side wall was kept at a constant temperature($25^{\circ}C$), and the opposite side wall was also held at a constant but lower temperature($20^{\circ}C$). Under above conditions, various magnitudes of the magnetic fields were applied up. GSMAC scheme is used for a numerical method, and the thermo-sensitive liquid crystal film(R20C5A) is utilized in order to visualize wall-temperature distributions as an experimental method. This study has resulted in the following fact that the natural convection of a magnetic fluids is controlled by the direction and intensity of the magnetic fields.

  • PDF

Interpretation of 'Tri-jiao' presented in ${\ulcorner}\;SuWen\;\cdot\;Linglanbidianlun\;{\lrcorner}$

  • Bang Jung-Kyun
    • The Journal of Korean Medicine
    • /
    • v.26 no.1 s.61
    • /
    • pp.71-75
    • /
    • 2005
  • There are wide variations in the definition and functions of tri-jiao among investigators in the area of Chinese medicine. Given a wide spectrum of views, it is difficult to identify uniform opinions about the definition and functions of tri-jiao. This paper is intended to clarify the meaning of the tri-jiao, which was presented as 'it builds a waterway and serves as the passage for the flow of Shuidao' in ${\ulcorner}\;SuWen\;\cdot\;Linglanbidianlun\;{\lrcorner}$ a classic text of traditional Chinese medicine. Investigators have been divided in their opinions in interpreting this reference; some claim that tri-jiao regulates fluid metabolism in the entire body while others assert that the role of tri-jiao is limited to lower-jiao that controls urination function. However, this does not appear convincing given the description in other texts of ${\ulcorner}\;SuWen\;\cdot\;Linglanbidianlun\;{\lrcorner}$, in which functions of 12 organs were explained in a summarized manner. The assumption that the role of tri-jiao is closely linked with lower-jiao seems to have deviated from the meaning of the original texts. Besides, fluid metabolism involves the entire body, and any pathological changes caused by disorders of fluid metabolism can affect any part of the body, not only the lower area of the body cavity. The phrase, 'passage for the flow of Shuidao,' expressed in the texts of ${\ulcorner}\;SuWen\;\cdot\;Linglanbidianlun\;{\lrcorner}$ is likely to mean that body fluid is also distributed and transported to the whole body along with primordial-Qi via tri-jiao. The phrase, 'passage for the flow of Shuidao' means that tri-jiao is involved in regulating body fluid metabolism and that it plays an important role in fluid distribution.

  • PDF