• Title/Summary/Keyword: Body Resonance

Search Result 522, Processing Time 0.035 seconds

Experimental Study of the Free Roll Decay Test for the Evaluation of Roll Damping Coefficients (감쇠계수 산출을 위한 자유 횡동요 감쇠실험 연구)

  • Kim, Namwoo;Kim, Yong Jig;Ha, Youngrok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.460-470
    • /
    • 2015
  • In general ships and FPSOs, roll damping is very small and consequently roll motion is very large at the roll resonance frequency. Proper evaluation of the roll damping coefficient at the resonance frequency is an important task in the study of roll motion and usually it is done by the analysis of free roll decay tests. The relative decrement method based on energy relation has been used mainly for the evaluation of roll damping coefficient from the roll decay test so far. As another method, the logarithmic decrement method based on equivalent linear decay assumption can be used for the same purpose and it is relatively simple. In this paper, both of the relative decrement method and the logarithmic decrement method are used for the evaluation of roll damping coefficient including quadratic damping from the free roll decay tests, and their results are cross-checked for verifying the obtained damping coefficients. Through applications to a box-type floating body equiped with bilge keels, it is shown that the two methods give almost the same damping coefficients in a practical view point and the cross-check of their results is to be a good tool to prevent a possible error. And also the quantitative effects of the bilge keels on the roll damping of box-type floating body are shown and discussed.

Human Postural Dynamics in Response to the Horizontal Vibration

  • Shin Young-Kyun;Fard Mohammad A.;Inooka Hikaru;Kim Il-Hwan
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.325-332
    • /
    • 2006
  • The dynamic responses of human standing postural control were investigated when subjects were exposed to long-term horizontal vibration. It was hypothesized that the motion of standing posture complexity mainly occurs in the mid-sagittal plane. The motor-driven support platform was designed as a source of vibration. The AC Servo-controlled motors produced anterior/posterior (AP) motion. The platform acceleration and the trunk angular velocity were used as the input and the output of the system, respectively. A method was proposed to identify the complexity of the standing posture dynamics. That is, during AP platform motion, the subject's knee, hip and neck were tightly constrained by fixing assembly, so the lower extremity, trunk and head of the subject's body were individually immovable. Through this method, it was assumed that the ankle joint rotation mainly contributed to maintaining their body balance. Four subjects took part in this study. During the experiment, the random vibration was generated at a magnitude of $0.44m/s^2$, and the duration of each trial was 40 seconds. Measured data were estimated by the coherence function and the frequency response function for analyzing the dynamic behavior of standing control over a frequency range from 0.2 to 3 Hz. Significant coherence values were found above 0.5 Hz. The estimation of frequency response function revealed the dominant resonance frequencies between 0.60 Hz and 0.68 Hz. On the basis of our results illustrated here, the linear model of standing postural control was further concluded.

Natural Frequency Analysis of Cantilever Plates with Added Mass (부가수 질량을 고려한 외팔판의 고유진동 해석)

  • Jang, Hyun-Gil;Nho, In Sik;Hong, Chang-Ho;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The high-skewed and/or composite propellers of current interests to reduce the ship vibration and to increase the acoustic performance are likely to be exposed to the unexpected structural problems. One typical example is that the added mass effect on the propellers working in the non-uniform wake field reduces the natural frequency of the propeller leading to the resonance with the low-frequency excitation of the external forces. To avoid this resonance problem during the design stage, the technique of fluid-structure interaction has been developed, but the higher-order effect of the blade geometry deformation is not yet considered in evaluating the added mass effects. In this paper the fluid boundary-value problem is formulated by the potential-based panel method in the inviscid fluid region with the velocity inflow due to the body deformation, and the structural response of the solid body under the hydrodynamic loading is solved by applying the finite element method which implements the 20-node iso-parametric element model. The fluid-structure problem is solved iteratively. A basic fluid-sturcture interaction study is performed with the simple rectangular plates of thin thickness with various planform submerged in the water of infinite extent. The computations show good correlation with the experimental results of Linholm, et al. (1965).

High-Resolution Numerical Simulation of Respiration-Induced Dynamic B0 Shift in the Head in High-Field MRI

  • Lee, So-Hee;Barg, Ji-Seong;Yeo, Seok-Jin;Lee, Seung-Kyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.38-45
    • /
    • 2019
  • Purpose: To demonstrate the high-resolution numerical simulation of the respiration-induced dynamic $B_0$ shift in the head using generalized susceptibility voxel convolution (gSVC). Materials and Methods: Previous dynamic $B_0$ simulation research has been limited to low-resolution numerical models due to the large computational demands of conventional Fourier-based $B_0$ calculation methods. Here, we show that a recently-proposed gSVC method can simulate dynamic $B_0$ maps from a realistic breathing human body model with high spatiotemporal resolution in a time-efficient manner. For a human body model, we used the Extended Cardiac And Torso (XCAT) phantom originally developed for computed tomography. The spatial resolution (voxel size) was kept isotropic and varied from 1 to 10 mm. We calculated $B_0$ maps in the brain of the model at 10 equally spaced points in a respiration cycle and analyzed the spatial gradients of each of them. The results were compared with experimental measurements in the literature. Results: The simulation predicted a maximum temporal variation of the $B_0$ shift in the brain of about 7 Hz at 7T. The magnitudes of the respiration-induced $B_0$ gradient in the x (right/left), y (anterior/posterior), and z (head/feet) directions determined by volumetric linear fitting, were < 0.01 Hz/cm, 0.18 Hz/cm, and 0.26 Hz/cm, respectively. These compared favorably with previous reports. We found that simulation voxel sizes greater than 5 mm can produce unreliable results. Conclusion: We have presented an efficient simulation framework for respiration-induced $B_0$ variation in the head. The method can be used to predict $B_0$ shifts with high spatiotemporal resolution under different breathing conditions and aid in the design of dynamic $B_0$ compensation strategies.

Fat Quantification in the Vertebral Body: Comparison of Modified Dixon Technique with Single-Voxel Magnetic Resonance Spectroscopy

  • Sang Hyup Lee;Hye Jin Yoo;Seung-Man Yu;Sung Hwan Hong;Ja-Young Choi;Hee Dong Chae
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.126-133
    • /
    • 2019
  • Objective: To compare the lumbar vertebral bone marrow fat-signal fractions obtained from six-echo modified Dixon sequence (6-echo m-Dixon) with those from single-voxel magnetic resonance spectroscopy (MRS) in patients with low back pain. Materials and Methods: Vertebral bone marrow fat-signal fractions were quantified by 6-echo m-Dixon (repetition time [TR] = 7.2 ms, echo time (TE) = 1.21 ms, echo spacing = 1.1 ms, total imaging time = 50 seconds) and single-voxel MRS measurements in 25 targets (23 normal bone marrows, two focal lesions) from 24 patients. The point-resolved spectroscopy sequence was used for localized single-voxel MRS (TR = 3000 ms, TE = 35 ms, total scan time = 1 minute 42 seconds). A 2 × 2 × 1.5 cm3 voxel was placed within the normal L2 or L3 vertebral body, or other lesions including a compression fracture or metastasis. The bone marrow fat spectrum was characterized on the basis of the magnitude of measurable fat peaks and a priori knowledge of the chemical structure of triglycerides. The imaging-based fat-signal fraction results were then compared to the MRS-based results. Results: There was a strong correlation between m-Dixon and MRS-based fat-signal fractions (slope = 0.86, R2 = 0.88, p < 0.001). In Bland-Altman analysis, 92.0% (23/25) of the data points were within the limits of agreement. Bland-Altman plots revealed a slight but systematic error in the m-Dixon based fat-signal fraction, which showed a prevailing overestimation of small fat-signal fractions (< 20%) and underestimation of high fat-signal fractions (> 20%). Conclusion: Given its excellent agreement with single-voxel-MRS, 6-echo m-Dixon can be used for visual and quantitative evaluation of vertebral bone marrow fat in daily practice.

Transmit Receive RF Resonator Optimization at 7 T MRI System (7 T 자기공명영상시스템에서의 송수신 RF 공진기 최적화)

  • Alam, Mohammad Wajih;Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1727-1730
    • /
    • 2016
  • Magnetic resonance imaging has a potential to produce clear anatomical as well as functional images of human body. However, the ability to diagnose is limited by signal to noise ratio (SNR) and the resolution of current medical systems. To remove the challenges prevalent due to the use of high field scanners, dedicated radio frequency coils are used. Transverse electromagnetic coils have an advantage of providing homogeneous magnetic field throughout the region but with low signal to noise ratio while surface coils have an advantage of providing higher signal to noise ratio but with low homogeneity. This research combines both the advantage into one by utilizing transmit only transverse electromagnetic radio frequency coils (8 channel) along with receive only surface coils (by varying the number) for better imaging of brain. A 7 Tesla 32-channel close fitting helmet shaped phased-array surface coils along with the combination of 8 channel transmit only transverse electromagnetic coils provided good homogeneity as well as significant SNR improvements throughout the human brain.

MAGNETIC RESONANCE IMAGING AND HISTOPATHOLOGIC CORRELATIONS OF FOCAL LESIONS INDUCED BY LASER (레이저 조사후 자기공명영상과 조직학적 소견의 상호일치도)

  • 이정구;정필상;정필섭;조정석;김상준
    • Korean Journal of Bronchoesophagology
    • /
    • v.2 no.2
    • /
    • pp.194-199
    • /
    • 1996
  • Laser therapy is becoming an accepted procedure for tissue coagulation and ablation and is especially useful in treating tumors. The laser energy is applied to the tissue of interest through various delivery systems which are introduced percutaneously, via blood vessels, through body openings, or during surgical exposure of the tissue. One of the major obstacles to effective application of lasers has been the lack of reliable method to determine the extent of tissue involvement in real time. Several methods have been proposed for monitoring the tissue response and controlling the laser in real time during laser therapy. Among them, magnetic resonance imaging(MRI) has been introduced to monitor laser-tissue interactions because laser irradiation induces changes not only in the thermal motions of the hydrogen protons within the tissue but also in the distribution and mobility of water and lipids. The buttocks of New Zealand rabbits were treated by KTP and $CO_2$laser(power : 10 watts, exposure time:10 seconds). m images were taken at immediately after lasering, 1 week later, 2 weeks later, and at the same time, tissues were harvested for histopathologic study. We analyzed MR images and histopathologic findigs of laser-treated tissues. The MR images taken immediately after laser treatment showed 3 layer pattern and which was correlated with histopathologic changes. We suggest MRI may become a useful monitoring tools for laser-tissue interaction.

  • PDF

The Magnetic Properties of Co-Zn Mixed Y-type Hexagonal Ferrite (Co-Zn 복합 Y-형 육방정 페라이트의 자기적 특성)

  • 이종협;권순주
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.114-121
    • /
    • 1994
  • A $Ba_{2}Co_{2-x}Zn_{x}Fe_{12}O_{22}(x\;=\;0.0~2.0,\;Co_{2-x}Zn_{x}Y)$ powder was prepared by a oxidation--coprecipitation method and sintered at $1150~1250^{\circ}C$ for 4 hours. The microstructures and magnetic properties(saturation magnetization, Curie temperature), complex permeability of sintered body were measured As increasing Zn content from x = 0 to 2.0 in $Co_{2-x}Zn_{x}Y$, the real value of complex permeased from 7 GHz to 1 GHz. Because of resonance in few GHz range, Y-type hexagonal ferrite is rmre applicalble than spinel ferrite in high frequency range, and more research would be necessary to find the mechanism of the second resonance observed in higher frequency.

  • PDF

Improvement Effect of the Sound Insulation Performance of the Corrugated Steel Panel by Sound Absorbing and Damping Materials (흡음 및 댐핑재 의한 주름강판의 차음성능 개선효과)

  • Kim, Seock-Hyun;Seo, Tae-Gun;Kim, Jung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.476-480
    • /
    • 2010
  • In the corrugated steel panels used for railway vehicles, sound insulation performance is significantly deteriorated by local resonance effect. In this study, as a countermeasure, polyurethane foam is filled in the corrugated steel panel and glass wool layer is inserted in the layered floor panel, and then improvement effect of the sound insulation performance is experimentally estimated. Based on ASTM E2249-02, intensity transmission loss is measured and estimated on the corrugated panel and floor structure. The aim of the study is to identify how the foam filling and inserting glass wool layer improve the sound insulation performance of the train body structure in aspect of the weight increment.

Remodeling of Infarcted Myocardium with Contrast-Enhanced Magnetic Resonance Imaging

  • 최병욱;최규옥;김영진;정남식;임세중
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.45-45
    • /
    • 2003
  • To evaluate remodeling of infarcted myocardium with contrast-enhanced MRI (co-MRI) at true end-diastole (ED) MRI was performed with a Gyroscan Intera (1.5 Tesla, Philips, Netherlands) in 13 patients with acute subendocardial myocardial infarction. The First exam was done 0-15 days (mean 5.2days) after symptom onset and the second exam 28-88days (mean 49 days) after the first exam. Ce-MRI encompassing the entire left ventricle was performed with a multi-shot, turbo-field-echo, breath-hold sequence and a non-selective, inversion prepulse 10 minutes after the intravenous injection of Gd-DTPA at a dose of 0.2 mmol/kg body weight. To allow the long TD, ECG synchronization should use two RR-intervals for one acquisition of a segment of k-space by setting the heart rate to half that of the true heart rate. Trigger delay time (TD) was adjusted to the RR-interval for true end-diastolic imaging. The other typical parameters were TR=5.4ms, TE=1.6ms, voxel size=1.37${\times}$1.37${\times}$10mm, k-space data segmented into 8 segments with 32 lines of segment per two cycles over 16 cardiac circles. The thickness of hyperenhanced myocardium and epicardially nonenhanced myocardium were followed.

  • PDF