• Title/Summary/Keyword: Body Posture stability

Search Result 59, Processing Time 0.022 seconds

Effect of the Underwater Ai-Chi Exercise Program on Hip Joint Mobility, Body Balance and Posture Change Based on Amount of the Physical Activity of College Students (수중 Ai-Chi 운동프로그램이 신체 활동량에 따른 대상자의 엉덩관절 가동성과 자세 및 균형에 미치는 영향 )

  • Ki-Won Nam;Se-Hun Kim
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.4
    • /
    • pp.89-96
    • /
    • 2023
  • PURPOSE: To investigate the effects of the underwater Ai-Chi exercise on the joint range of motion, balance and posture. METHODS: Thirty-six college students (30 men, 6 women) were divided into a 'low physical activity' groups (Group I). and an 'appropriate physical activity' groups (Group II). The Ai-Chi underwater exercise was conducted three times a week for two weeks for both groups. A goniometer was used to measure the range of motion of the hip joint, and Y-Balance and the posture screen mobile were used to measure the stability of the lower extremities. RESULTS: An evaluation of the range of motion of the hip joint before and after the Ai-Chi exercise showed significant results in the low physical activity group. However, the flexural range showed a significant increase after exercise, but not significant result. In the comparison of the mean increase between groups, only the right hip joint showed a significant difference in both groups. Also, in the comparison of the Y balance test and posture screen test before and after exercise, both groups showed significant. CONCLUSION: The Ai-Chi underwater exercise helped improve the range of motion of the hip joint and the ability to balance. Also It helped improve posture alignment. In addition, although the increase in all physical activity groups lower than the appropriate physical activity groups was greater in all figures, the increase in the number of samples, the extension of the experimental period, and various variables could be obtained.

Age-Related Change of Upper Body Contribution to Walking Speed (보행스피드에 대한 상체 공헌도의 연령에 따른 변화)

  • Bae, Yeoung-Sang
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.27-36
    • /
    • 2007
  • The purpose of this study was to investigate the effect of the upper body in order to increase a propulsive force in the old's walking. The subjects were each 10 males, the latter term of the aged and former term of the aged. There were three walking speeds of slow(about 5km/h), medium(about 6km/h), and maximum speed(about 7km/h). The subjects walking 11m were filmed the 5m section (from 3m to 8m) by 2-video cameras using three dimensional cinematography. And we computed different mechanical quantities and especially computed the relative momentum in order to achieve this study's aim. In this study, we was able to acquire some knowledge. The step length and step frequency increased in proportion to the walking speed, and the faster walking speed, the shorter ratio of supporting time( both legs supporting time/one step length time). When it was one leg support phase, the torso was indicated to generate the momentum in order to produce the propulsive force of walking. The upper and lower body had a cooperative relation for walking such as keeping step rate with the arms to legs and maintaining the body balance. The opposition phase for upward-and-downward direction of the torso and arms in walking was functioned to prevent the increase rapidly toward vertical direction of the center of gravity. The arms had contributed to coordinate the tempo of legs and the posture maintenance of the upper body. And by absorbing the relative momentum from the upper torso with arms to the lower torso, it had the rhythmical movement on upward-and-downward direction reducing the vertical reaction force. On account of the relations of absorption and generation of the propulsive force and the production of vertical impulse in the lower torso when walking by maximum speed, it was showed that the function of lower torso was come up as important problem for the mechanical posture stability and propulsive force coordination.

Design of a Two-wheeled Balancing Mobile Platform with Tilting Motion (횡방향 틸팅 기능을 갖는 이륜 밸런싱 모바일 플랫폼 설계)

  • Kim, Sangtae;Seo, Jeongmin;Kwon, SangJoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.87-93
    • /
    • 2014
  • Conventional two-wheeled balancing robots are limited in terms of turning speed because they lack the lateral motion to compensate for the centrifugal force needed to stop rollover. In order to improve lateral stability, this paper suggests a two-wheeled balancing mobile platform equipped with a tilting mechanism to generate roll motions. In terms of static force analysis, it is shown that the two-body sliding type tilting method is more suitable for small-size mobile robots than the single-body type. For the mathematical modeling, the tilting-balancing platform is assumed as a 3D inverted pendulum and the four-degrees-of-freedom equation of motion is derived. In the velocity/posture control loop, the desired tilting angle is naturally determined according to the changes of forward velocity and steering yaw rate. The efficiency of the developed tilting type balancing mobile platform is validated through experimental results.

Changes of Body Balance on Static Posture According to Types of Induced Ametropia (정적자세에서 유도된 비정시의 유형에 따른 신체균형의 변화)

  • Kim, Sang-Yeob;Moon, Byeong-Yeon;Cho, Hyun Gug
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.2
    • /
    • pp.239-246
    • /
    • 2014
  • Purpose: This study was performed to investigate the effect of induced ametropia on static posture for body balance. Methods: Twenty subjects (10 males, 10 females) of average age $23.4{pm}2.70$ years were participated and ametropia(binocular myopia; BM, simple myopic anisometropia; SMA, binocular hyperopia; BH, and simple hyperopic anisometropia; SHA) were induced with ${pm}0.50D$, ${\pm}1.00D$, ${\pm}1.50D$, ${\pm}2.00D$, ${\pm}3.00D$, ${\pm}4.00D$, ${\pm}5.00D$, respectively. General stability (ST), weight distribution index (WDI), and fall risk index (FI) were measured using TETRAX the biofeedback systems. Each index of the body balance was evaluated for 32 seconds in each ametropic condition and those value was compared with the value in fully corrected condition. Results: The ST showed significant increase from +0.50 D under condition of BM, from +1.00 D under condition of SMA, from -1.00 D under condition of BH, and from -1.50 D under condition of SHA compared with under condition of fully corrected condition, respectively. The FI showed significant increases from +4.00 D under condition of BM, from -1.00 D under condition of BH, and from -1.50 D under condition of SHA. The WDI show no change in all ametropia condition. Conclusions: Whatever ametropia is, uncorrected refractive error could reduce the general stability of body balance and increase the falling risk.

The Study on an Using Effect of Head Mounted Display to the Body in Virtual Environments (가상환경에서의 HMD사용이 인체에 미치는 영향에 관한 연구)

  • 이창민;정진희
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.4
    • /
    • pp.389-398
    • /
    • 2000
  • The focus of this study is to investigate how personal display system - Head Mounted Display(HMD) and VDU-affect to the body in virtual environments. This prediction was tested by a comparing of playing 3D games while wearing a HMD and monitoring a VDU for an hour. As quantitative measuring and analyzing tools, SSQ, RSSQ, pre and post posture stability test and vision test are used. The results showed that SSQ and RSSQ total score (TS) are related with the results of pre and post posture stability test and SSQ and RSSQ TS of HMD is higher than TS of VDU by one point five times. Especially, TS of MRG3C, having large field of view, has a possibility by two times of simulator sickness (SS). And in order to investigate the degree of SS regarding to the simulator control condition, two conditions, subjective-passive and subjective-active environments were compared. However, there was no significant difference between two environments. The repetition of the same environment has no effect to reduce the SS. Disorientation and oculomotor scores of the SSQ and RSSQ are higher than that of another symptoms. In addition, RSSQ score of strain/confusion is higher than that of nausea. Therefore, we assume that personal fear could possibly increase the simulator sickness in virtual environments.

  • PDF

The Effect of Human Lower Limb Vibration on Postural Stability during Unstable Posture (불안정한 자세에서 하지에 인가한 진동자극이 자세 안정성 개선에 미치는 영향)

  • Eun, H.I.;Yu, M.;Kim, D.W.;Kwon, T.K.;Kim, N.G.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.628-635
    • /
    • 2007
  • We studied the effect of vibratory stimulations of different leg muscles, tibialis anterior(TA) and triceps surae(TS), and plantar zones in ten healthy subjects during 1) quiet standing, 2) forward lean of body, 3) backward lean of body, 4) right lean of body, and 5) left lean of body. The experiments were performed on the force platform. The effect of vibration were measured by monitoring the area of COP(Center of pressure) sway. The subjects wore a vibratory stimulation system on foot and ankles and were given the instruction not to resist against the applied perturbations. The results show that all vibratory stimulations to lower limb muscles and plantar zones reduced the COP sway area. This reduction of the COP sway area occurred also in partial vibratory stimulations during quiet standing. In forward lean of body, vibratory stimulations to TA reduced the COP sway area. During backward lean of body, vibratory stimulations to TS reduced the COP sway area. When the subject was tilted right, vibratory stimulations to left plantar zone reduced the COP sway area. During left lean of body, vibratory stimulations to right plantar zone reduced the COP sway area. Thus, the influence of vibratory stimulations to leg muscle and plantar zones differed significantly depending on the lean of body. We suggest that the vibration stimuli from leg muscles and plantar zones could be selectively used to help maintaining postural balance stable.

Implementation of the F-B function comparison on the body movement

  • Kim, Jeong-Lae;Hwang, Kyu-Sung;Nam, Yong-Seok
    • International journal of advanced smart convergence
    • /
    • v.3 no.1
    • /
    • pp.20-24
    • /
    • 2014
  • To compare body signal, was designed the F-B function system on the body movement for the comfortable state. To detect subject of the normal state, was decided on the base of physical signal in the body movement. There are to detect the condition of Vision, Vestibular, Somatosensory and CNS. Vision condition was verified a variation of greater average (Vi-${\Phi}_{AVG-AVG}$) was presented slightly greater at $17.424{\pm}9.65$ unit. Vestibular condition was identified a variation of slightly greater average (Ve-${\Phi}_{AVG-AVG}$) was presented at $9.068{\pm}1.478$ unit. Somatosensory condition was checked a variation of smaller average (So-${\Phi}_{AVG-AVG}$) was presented slightly smaller at $2.79{\pm}0.419$ unit. CNS condition was confirmed a variation of diminutive smaller average (C-${\Phi}_{AVG-AVG}$) was presented slightly larger at $0.557{\pm}0.153$ unit. As the model depends on the F-B function system of body movement, average values of these perturbation were computed F-B function comparison data. These systems will be to infer a data algorithm and a data signal processing system for the evaluation of the stability.

Lumbo-pelvic stabilization approach for lower back dysfunction (요통의 요골반부 안정화(lumbo-pelvic stabilization) 접근법)

  • Kim, Suhn-Yeop
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.4 no.1
    • /
    • pp.7-20
    • /
    • 1998
  • Activity of the trunk muscles is essential for maintaining stability of the lumbar spine because of the unstable structure of that portion of the spine. The central nervous system deals with stabilization of the spine by contraction of the abdominal and multifidus muscles in anticipations of reactive forces produced by limb movement. Recent evidence indicates that the lumbar multifidus muscle and transversus abdominis muscle may be involved in controlling spinal stability. Stabilization training in neutral spine is an integrated approach of education in proper posture and body mechanics along with exercise to improve strength, flexibility, muscular and cardiovascular endurance, and coordination of movement.

  • PDF

Comparison of Muscle Activities Serratus Anterior and Upper Trapezius Muscle During Scapular Protraction in Quadruped Position at Legs Difference (네발기기 자세에서 어깨뼈 내밈 운동시 다리들기에 따른 앞톱니근과 위등세모근의 근활성도 비교)

  • Kim, Hee-gon;Hwang, Byeong-jun;Kim, Jong-woo
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • Background: This study was conducted to investigate the effect of leg lift difference on the serratus anterior muscle and the upper trapezius muscle when a subject with winged scapula performs a scapula protraction exercise in a four-leg crawling posture. Method: Twenty normal adults and 20 subjects with winged scapula participated in the experiment. Surface EMG recordings were collected from serratus anterior muscle and back trapezius muscle during scapula protraction exercises. Scapular winging is measured with the lifting distance of scapula retraction to the back using an electronic digital caliper. In two groups of four-leg crawling posture, the two legs support, the dominant leg lifting, and the non-dominant leg lifting, including the scapula protraction, were performed. To examine the difference between groups in the variance analysis, the Bonferroni correction was used (significance level ${\alpha}=.017$). Statistical significance level ${\alpha}$ was .05. Results: There was a significant difference in serratus anterior muscle and upper trapezius muscle during push-up plus exercise in leg lifting in four-leg crawling posture, but there were no significant differences in muscle activity between serratus anterior muscle and upper trapezius muscle, and there was no significant difference according to the presence or absence of scapular winging. Conclusion: For the shoulder stability of the ipsilateral side with the serratus anterior muscle, the leg-lifting posture is effective in the four-leg crawling, and also when a subject with winged scapula chooses an exercise, lifting the ipsilateral side of leg with scapula protraction exercises at the same time may have a positive effect on scapula dysfunction.

The Mechanism Study of Gait on a Load and Gender Difference

  • Ryew, Checheong;Hyun, Seunghyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2021
  • Gait kinematics and kinetics have a similar tendency between men and women, yet it remains unclear how walking while carrying a load affects the gait mechanism. Twenty adults walked with preferred velocity on level ground of 20 m relative to change of a load carriage (no load, 15%, 30% of the body weights) aimed to observe gait mechanism. We measured gait posture using the three-dimensional image analysis and ground reaction force system during stance phase on left foot. In main effect of gender difference, men showed increased displacement of center of gravity (COG) compared to women, and it showed more extended joint angle of hip and knee in sagittal plane. In main effect of a load difference, knee joint showed more flexed postuel relative to increase of load carriage. In main effect of load difference on the kinetic variables, medial-lateral force, anterior-posterior force (1st breaking, 2nd propulsive), vertical force, center of pressure (COP) area, leg stiffness, and whole body stiffness showed more increased values relative to increase of load carriage. Also, men showed more increased COP area compared to women. Interaction showed in the 1st anterior-posterior force, and as a result of one-way variance analysis, it was found that a load main effect had a greater influence on the increase in the magnitude of the braking force than the gender. The data in this study explains that women require little kinematic alteration compared to men, while men in more stiff posture accommodate an added load compared to women during gait. Additionally, it suggests that dynamic stability is maintained by adopting different gait strategies relative to gender and load difference.