• Title/Summary/Keyword: Bobbin

Search Result 118, Processing Time 0.022 seconds

Effects of Air Gap on HTS Magnet Consisting of Double Pancake Windings

  • Ku, Myung-Hwan;Kang, Myung-Hun;Kim, Young-Min;Lee, Hee-Joon;Cha, Guee-Soo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.4
    • /
    • pp.33-36
    • /
    • 2009
  • An air gap between the pancake windings was provided in this paper to increase the central magnetic field of a high temperature superconducting (HTS) magnet consisting of pancake windings. Unlike the LTS magnet, providing an air gap between the pancake windings increases the central magnetic field of a HTS magnet. Furthermore, the uniformity of the magnetic field near the center of the magnet increased because the pancake windings spread out in wider area. Effects of the air gap on the central magnetic field of an HTS magnet was described in this paper, Calculation of the critical current was carried out by using E-J relation of the HTS wire and the optimization technique was adopted to obtain the appropriate critical current which could maximize the central magnetic field. Pancake windings with BSCCO-2223 HTS wire were wound on glass epoxy bobbin. 6 double pancake windings with 200 turns were used to construct a HTS magnet. Characteristics of the HTS magnet including the central magnetic field and the uniformity of the magnetic field were measured and compared with the results of calculation.

Wind-and-flip technique for the fabrication of a persistent mode superconductive magnet by using a coated conductor

  • Lee, Hee-Gyoun;Kim, Jae-Geun;Kim, Woo-Seok;Lee, Seung-Wook;Choi, Kyeong-Dal;Hong, Gye-Won;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.2
    • /
    • pp.7-10
    • /
    • 2007
  • Persistent mode HTS pancake coil has been fabricated using a coated conductor by a "wind-and-flip" method. A coated conductor with the length of 1.2 meters was divided at the center along the length. The sliced coated conductor was wound on a pair of bobbins with a diameter of around 4 cm and two pancake coils connected superconductively without a resistive joint were prepared. By flipping one of the pancake coils, the magnetic field generated by each coil is to be aligned to the same direction and generate meaningful magnetic field while the magnetic fields of two spit coils are canceled without flipping. Permanent current was induced by flowing current to the coil immersed in liquid nitrogen pool using a power supply. A magnetic field of 48.8 Gauss was generated when 20 A of current was flowing in the pancake coils. The "Wind and flip" method can be applied for the fabrication of a long solenoid magnet by winding a sliced coated conductor on a cylindrical bobbin. It is also introduced that the construction of multiple sets of pancake (or solenoid) coils is possible by a "wind-and-flip" method using a wide coated conductor.

The Design and Performance Test of Tracking Actuator for NFR system (근접장 기록 장치를 위한 트랙킹 구동기의 설계 및 실험)

  • Kim, Gi-Hyeon;Lee, Mun-Gu;Gwon, Dae-Gap
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.174-181
    • /
    • 2001
  • Nowadays, the improvement and development of Multi-media and information & communication technology is rapidly processed. They need large data storage capacity. So that, many studies and researches in data storage have been carried out. According to them, the data storage capacity has been increased. But the limitation of storage capacity is happened for several problems. One of them is spot & pit size in optical and magnetic data storage and another is the resolution of actuators. The problems in spot & pit size are covered by new data storage methods-- for examples, AFM(Atomic Force Microscopy), MO(Magneto-optical) system, and NFR(Near-Field decoding) system etc. But the resolution limit of an actuator was not developed and doesn\`t follow up the development of spot & pit size. Because of them, we should improve a resolution of an actuator. Especially, in this paper an actuator if studied and designed for NFR (in using SIL(Solid Immersion Lens) system. It is a dual stage actuator, which consists of a Fine actuator and a Coarse actuator. and should desire 100nm accuracy. Its actuating force generation method is VCM(Voice Coil Motor). The Fine actuator is composed of 4-leaf springs and a bobbin wrapped by coil. The Coarse actuator has Coils and 3-Roller bearings. Also, The Characteristics of designed actuator for NFR system is estimated by Sine-Swept mode and LDV(Laser Doppler Vibro-meter).

  • PDF

Optimum Combination of Pickup Coil Type and Magnetically Shielded Room for Maximum SNR to Measure Biomagnetism (생체신호 측정을 위한 최대의 신호 대 잡음비를 가지는 검출코일의 형태 와 자기차폐실의 최적 조합)

  • Yu, K.K.;Lee, Y.H.;Kang, C.S.;Kim, J.M.;Park, Y.K.
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.45-49
    • /
    • 2007
  • We have investigated the optimum combination of the environmental noise condition and type of SQUID pickup coil in order to obtain maximum signal-to-noise ratio (SNR). The measurement probe consists of 1st order gradiometer with pickup coils of 100 mm, 70 mm, and 50 mm baseline length, a 2nd order gradiometer with 50 mm baseline, and a magnetometer. The pickup coils are fabricated by winding Nb wire on a bobbin with 200 mm diameter. Noise and heart signal of a healthy male were measured by various SQUID sensors with different types of pickup coils in various magnetically shielded rooms (MSR), and compared to each other. The shielding factors were found to be 43 dB, 35 dB and 25 dB at 0.1 Hz for MSR-AS, MSR-BS, MSR-CS, respectively. White noises were $3.5\;fT/Hz^{1/2}$, $4.5\;fT/Hz^{1/2}$ and $3\;fT/Hz^{1/2}$ for the 1st order gradiometers, the 2nd order gradiometers, and magnetometer for all MSRs. SNR of the magnetometer was up to 56 dB in MSR-AS, while the 1st order axial gradiometer with 70 mm baseline length was up to 54 dB in MSR-BS. The 2nd order axial gradiometer with 50 mm baseline length of pickup coil was found to be up to 40 dB in MSR-CS.

  • PDF

A Study on the Profile Change Measurement of Steam Generator Tubes with Tube Expansion Methods

  • Kim, Young-Kyu;Song, Myung-Ho;Choi, Myung-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.543-551
    • /
    • 2011
  • Steam generator tubes for nuclear power plants contain the local shape transitions on their inner or outer surface such as dent, bulge, over-expansion, eccentricity, deflection, and so on by the application of physical force during the tube manufacturing and steam generator assembling and by the sludge (that is, corrosion products) produced during the plant operation. The structural integrity of tubes will be degraded by generating the corrosive crack at that location. The profilometry using the traditional bobbin probes which are currently applied for measuring the profile change of tubes gives us basic information such as axial locations and average magnitudes of deformations. However, the three-dimensional quantitative evaluation on circumferential locations, distributional angle, and size of deformations will have to be conducted to understand the effects of residual stresses increased by local deformations on corrosive cracking of tubes. Steam generator tubes of Korean standard nuclear power plants expanded within their tube-sheets by the explosive expansion method and suffered from corrosive cracks in the early stage of power operation. Thus, local deformations of steam generator tubes at the top of tube-sheet were measured with an advanced rotating probe and a laser profiling system for the two cases where the tubes expanded by the explosive expansion method and hydraulic expansion. Also, the trends of eccentricity, deflection, and over-expansion of tubes were evaluated. The advanced eddy current profilometry was confirmed to provide accurate information of local deformations compared with laser profilometry.

Structure Design and Thermal Analysis of Cryogenic Cooling System for a 1500 A, 400 mH Class HTS DC Reactor (1500 A, 400 mH급 초전도 직류 리액터용 극저온 냉각 시스템 구조 설계 및 열 해석)

  • Quan, Dao-Van;Le, Tat-Thang;Sung, Hae-Jin;Park, Min-Won;Yu, In-Keun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.1
    • /
    • pp.31-41
    • /
    • 2018
  • This paper discusses a structure design and thermal analysis of cryogenic conduction cooling system for a high current HTS DC reactor. Dimensions of the conduction cooling system parts including HTS magnets, bobbin structures, current leads, support bars, and thermal exchangers were calculated and drawn using a 3D CAD program. A finite element method model was built for determining the optimal design parameters and analyzing the thermo-mechanical characteristics. The operating current and inductance of the reactor magnet were 1,500 A, 400 mH, respectively. The thermal load of the HTS DC reactor was analyzed for determining the cooling capacity of the cryo-cooler. Hence, we carried out the operating test of conduction cooling system of the 1st stage area with high current flow. The cooper bars was cooled down to 40 K and HTS leads operated stably. As a experiment result, the total heat load of the 1st stage area is 190 W. The study results can be effectively utilized for the design and fabrication of a commercial HTS DC reactor.

Measurement of fMCG Signals using an Axial Type First-Order SQUID Gradiometer System (권선형 1차 미분계를 이용한 태아심자도 신호 측정)

  • Yu, K.K.;Kim, K.;Kang, C.S.;Kim, J.M.;Lee, Y.H.
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.139-143
    • /
    • 2009
  • We have fabricated a low-noise 61-channel axial-type first-order gradiometer system for measuring fetal magnetocardiography(MCG) signals. Superconducting quantum interference device(SQUID) sensor was based on double relaxation oscillation SQUID(DROS) for detecting biomagnetic signal, such as MCG, magnetoencphalogram(MEG) and fetal-MCG. The SQUID sensor detected axial component of fetal MCG signal. The pickup coil of SQUID sensor was wound with 120 ${\mu}m$ NbTi wire on bobbin(20 mm diameter) and was a first-order gradiometer to reject the environment noise. The sensors have low white noise of 3 $fT/Hz^{1/2}$ at 100 Hz on average. The fetal MCG was measured from $24{\sim}36$ weeks fetus in a magnetically shielded room(MSR) with shielding factor of 35 dB at 0.1 Hz and 80 dB at 100 Hz(comparatively mild shielding). The MCG signal contained maternal and fetal MCG. Fetal MCG could be distinguished relatively easily from maternal MCG by using independent component analysis(ICA) filter. In addition, we could observe T peak as well as QRS wave, respectively. It will be useful in detecting fetal cardiac diseases.

  • PDF

Delamination behaviors of GdBCO CC tapes under different transverse loading conditions

  • Gorospe, Alking B.;Bautista, Zhierwinjay M.;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.13-17
    • /
    • 2015
  • In superconducting coil applications particularly in wet wound coils, coated conductor (CC) tapes are subjected to different type of stresses. These include hoop stress acting along the length of the CC tape and the Lorentz force acting perpendicular to the CC tape's surface. Since the latter is commonly associated with delamination problem of multi-layered CC tapes, more understanding and attention on the delamination phenomena induced in the case of coil applications are needed. Difference on the coefficient of thermal expansion (CTE) of each constituent layer of the CC tape, the bobbin, and the impregnating materials is the main causes of delamination in CC tapes when subjected to thermal cycling. The CC tape might also experience cyclic loading due to the energizing scheme (on - off) during operation. In the design of degradation-free superconducting coils, therefore, characterization of the delamination behaviors including mechanism and strength in REBCO CC tapes becomes critical. In this study, transverse tensile tests were conducted under different loading conditions using different size of upper anvils on the GdBCO CC tapes. The mechanical and electromechanical delamination strength behaviors of the CC tapes under transverse tensile loading were examined and a two-parameter Weibull distribution analysis was conducted in statistical aspects. As a result, the CC tape showed similar range of mechanical delamination strength regardless of cross-head speed adopted. On the other hand, cyclic loading might have affected the CC tape in both upper anvil sizes adopted.

Enhancement of delamination strength in Cu-stabilized coated conductor tapes through additional treatments under transverse tension at room temperature

  • Shin, Hyung-Seop;Bautista, Zhierwinjay;Moon, Seung-Hyun;Lee, Jae-Hun;Mean, Byoung-Jean
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.25-28
    • /
    • 2017
  • In superconducting coil applications particularly in wet wound coils, coated conductor (CC) tapes are subjected to different type of stresses that could affect its electromechanical transport property. These include hoop stress acting along the length of the CC tape and the Lorentz force acting perpendicular to the CC tape's surface. Since the latter is commonly associated with the delamination problem of multi-layered REBCO CC tapes, more understanding and attention on the delamination phenomena induced in the case of coil applications are needed. Difference on the coefficient of thermal expansion (CTE) of each constituent layer of the CC tape, the bobbin, and the impregnating materials is the main causes of delamination in CC tapes when subjected to thermal and mechanical cycling. In the design of degradation-free superconducting coils, therefore, characterization of the delamination behaviors including mechanism and strength in the multi-layered REBCO CC tapes becomes a critical issue. Various trials to increase the delamination strength by improving interface characteristics at interlayers have been performed. In this study, in order to investigate the influences of laser cleaning and Ag annealing treated at the substrate side surface, transverse tensile tests were conducted under different sample configurations using $4.5mm{\times}8mm$ upper anvil. The mechanical delamination strength of differently processed CC samples was examined at room temperature (RT). As a result, the Sample 1 with the additional laser cleaning and Ag annealing processes and the Sample 2 with additional Ag annealing process only showed higher mechanical delamination strength as compared to the Sample 3 without such additional treatments. Sample 3 showed quite different behavior when the loading direction is to the substrate side where the delamination strength much lower as compared to other cases.

Development of New ECT Probe Separating the Permebility Variation Signal in the SG Tube (증기발생기 전열관의 투자율 변화신호 분리를 위한 신형 탐촉자 개발)

  • Park, Duck-Gun;Ryu, Kwon-Sang;Lee, Jeong-Kee;Son, De-Rac
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • A new ECT probe to separate the ECT signal distortion due to PVC (permeability variation clusters) and ordinary defects created in SG tubes has been developed. The hystersis loops of PVC which are extracted from retired SG (steam generator) tubes of Kori-1 NNP were measured. The tensile tests were performed to identify the mechanism of PVC creation. The conditions detecting the PVC created in 56 tubes were investigated using computer simulation, and the signal processing circuits were inserted in the probe for the digital signal transmission. The new Probe can measure and separate the PVC signal which is created in the SG tubes, and also measures the defects in Ni-sleeving part of SG tubes. furthermore the new ECT probe can measure the defects as fast as bobbin probe, and enhance the testing speed as well as reliability of the defect detection of SG tubes.