• Title/Summary/Keyword: Boar sperm motility and kinematic characteristics

Search Result 7, Processing Time 0.023 seconds

Investigation on Association of ESR2 polymorphism as a Candidate Gene for Duroc sperm motility and kinematic characteristics (두록 정자의 운동학적 특성과 후보 유전자 ESR2 유전적 다형성과의 연관성 분석)

  • Jeong, Yong-dae;Jeong, Jin-Young;Sa, Soo-Jin;Kim, Ki-Hyun;Cho, Eun-Seok;Yu, Dong-Jo;Choi, Jung-Woo;Jang, Hyun-Jun;Woo, Jae-Seok;Park, Sungk-won
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.287-291
    • /
    • 2016
  • For evaluating the boar semen quality, sperm motility (MOT) is an important parameter because the movement of spermatozoa indicates active metabolism, membrane integrity and fertilizing capacity. Estrogen receptors 2(ESR2) is involved in estrogen related apoptosis in cell cycle spermatogenesis, but their functions have not been confirmed in pig until now. Therefore, this study was conducted to analyze their association with sperm motility and kinematic characteristics. DNA samples from 105 Duroc pigs with records of semen motility and kinematic characteristics [Total motile spermatozoa (MOT), Curvilinear velocity(VCL), Straight-line velocity(VSL), the ratio between VSL and VCL(LIN), Amplitude of Lateral Head displacement(ALH)] were analyzed. A SNP in coding region of ESR2 g.35547A > G in exon 5 was associated with MOT (p < 0.05) in Duroc population. Therefore, we suggest that the porcine ESR2 gene may be used as a molecular marker for Duroc boar semen quality, although its functional effects were not defined yet. These results might shed new light on the roles of ESR2 in spermatogenesis as candidate gene for boar fertility, but still the lack of association across populations should be considered.

Exposure of chlorpyrifos impairs the normal function of boar spermatozoa

  • Adikari Arachchige Dilki Indrachapa Adikari;Young-Joo Yi
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.307-316
    • /
    • 2022
  • The misuse of pesticides has resulted in environmental pollution, which directly or indirectly affects all life on earth. Chlorpyrifos is a chlorinated organophosphorus pesticide that is commonly used in agriculture. The aim of this study was to investigate the effects of chlorpyrifos on the fertilization function of boar spermatozoa. Sperm samples from boars were subjected to varying concentrations of chlorpyrifos from 10 to 200 µM for two incubation periods, 30 min or 2 hrs. The boar spermatozoa were then evaluated for motility, motion kinematics, viability, acrosome integrity, chromatin stability, and generation of intracellular reactive oxygen species (ROS). There was a significant percentage reduction in sperm motility and motion kinematic parameters after both incubation periods (p < 0.05). The proportion of viable spermatozoa decreased after incubation for 30 min and 2 hrs in a dose-dependent manner (p < 0.05). A significantly lower percentage of normal acrosomes was observed in spermatozoa exposed to 200 µM chlorpyrifos over both incubation periods, compared to the controls. The damage to sperm DNA was significantly higher when the exposure time to chlorpyrifos was longer. There was a significant increase in the ROS levels in spermatozoa incubated with chlorpyrifos for 2 hrs (p < 0.05). From the results of the present study, it is concluded that direct exposure of boar spermatozoa to chlorpyrifos altered boar sperm characteristics, suggesting potential toxicity that may affect the male reproductive function.

Association study analysis of CD9 as candidate gene for Duroc pig sperm motility and kinematic characteristics (두록 정자 운동학적 특성과 후보유전자 CD9 유전자와의 연관성 분석)

  • Jeong, Yong-dae;Jeong, Jin-Young;Kim, Ki-Hyun;Cho, Eun-Seok;Yu, Dong-Jo;Choi, Jung-Woo;Jang, Hyun-Jun;Park, Sungk-won;Sa, Soo-Jin;Woo, Jae-Seok
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.281-285
    • /
    • 2016
  • Cluster-of-differentiation antigen 9 (CD9) gene expressed in the male germ line stem cells is crucial for sperm-egg fusion, and was therefore selected as a candidate gene to investigate Duroc boar semen motility and kinematic characteristics. This study was performed to investigatetheir association with semen motility and kinematic characteristics. DNA samples from 96 Duroc pigs with records of sperm motility and kinematic characteristics [Total motile spermatozoa (MOT, $82.27{\pm}5.58$), Curvilinear velocity(VCL, $68.37{\pm}14.58$), Straight-line velocity(VSL, $29.06{\pm}6.58$), the ratio between VSL and VCL(LIN, $47.36{\pm}8.42$), Amplitude of Lateral Head displacement(ALH, $2.88{\pm}0.70$)] were used in present study. A single nucleotide polymorphism (g.358A>T) in intron 6 was associated with MOT, VCL, VAP and ALH in Duroc population (p<0.05). Therefore, we suggest that the porcine CD9 may be used as a molecular marker for Duroc boar semen quality, although its functional effect was not clear yet. These results will improve the understanding of the functions of the CD9 in spermatogenesis within the reproductive tracts, and will shed light on CD9 as a candidate gene in the selection of good sperm quality boars.

Association study analysis of phospholipase C zeta gene polymorphism forsperm motility and kinematic characteristics in liquid semen of Boar (Phospholipase C zeta 유전자의 유전적다형성과 돼지 액상정액의 운동학적 특성과의 연관성 분석)

  • Jeong, Yong-dae;Jeong, Jin-Young;Sa, Soo-Jin;Kim, Ki-Hyun;Cho, Eun-Seok;Yu, Dong-Jo;Park, Sungk-won;Jang, Hyun-Jun;Woo, Jae-Seok;Choi, Jung-Woo
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.293-297
    • /
    • 2016
  • For evaluating the boar semen quality, sperm motility is an important parameter because the movement of sperm indicates active metabolism, membrane integrity and fertilizing capacity. Phospholipase C zeta (PLCz) is important enzyme in spermatogenesis, but the effect has not been confirmed in pigs yet. Therefore, this study was aimed to analyze their association with sperm motility and kinematic characteristics. DNA samples from 124 Duroc pigs with records of sperm motility and kinematic characteristics [total motile spermatozoa (MOT), curvilinear velocity (VCL), straight-line velocity (VSL), the ratio between VSL and VCL (LIN), amplitude of lateral head displacement (ALH)] were subjected. A SNP in non-coding region of PLCz g.158 A > C was associated with MOT (p < 0.05), VCL (p < 0.01), LIN (p < 0.01) and ALH (p < 0.05) in Duroc population. Therefore, we suggest that the intron region of the porcine PLCz gene may be used as a molecular marker for Duroc boar semen quality, although its functional effect was not defined yet. Whether the association is due to the candidate gene or not require further verification. Thus, it will be of interest to continue association studies in the regions surrounding those genes.

Association Study Analysis of Phospholipase C Zeta (PLCz) Gene Polymorphism (g.158T>C) for Duroc Boar Post-Thawed Semen Motility and Kinematic Characteristics (PLCz 유전자의 유전적 다형성(g.158T>C)과 두록 동결정액의 운동학적 특성과의 연관성 분석)

  • Sa, Soo-Jin;Lee, Mi-Jin;Kim, Ki-Hyun;Woo, Jae-Seok;Ko, Jun-Ho;Kim, Young-Ju;Cho, Eun-Seok
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.137-142
    • /
    • 2015
  • Cryopreservation of boar semen is continually researched in reproductive technologies and genetic resource banking in breed conservation. For evaluating the boar semen quality, sperm motility (MOT) is an important parameter because the movement of spermatozoa indicates active metabolism, membrane integrity and fertilizing capacity. Various researches have been trying to improve the quality of semen post-thawed in boar. Recently, polymorphism (g.158T>C) of phospholipase C zeta (PLCz) gene reported to be significant association with MOT. This study was conducted to evaluate the PLCz gene as a positional controlling for motility and kinematic characteristics of post-thawed boar semen. To results, The g.158 T>C SNP of PLCz was significantly associated with frozen semen motility and kinematic characteristics. g.158 T>C SNP was high significantly associated with MOT, VCL, VSL and VAP (p<0.0001, p=0.0002, p<0.0001 and p<0.0001, respectively). Therefore, we suggest that the intron region of the porcine PLCz, may be used as a molecular marker for Duroc boar post-thawed semen quality, although its functional effect was not defined yet. Whether the association is due to the candidate gene or not require further verification. Thus, it will be of interest to continue association studies in the regions surrounding those genes.

Association with Post-Thawed Semen Motility and Kinematic Characteristics of g.35756 T>C on Estrogen Receptor 1 (ESR1) Gene in Duroc Pigs (두록의 동결정액의 운동학적 특성과 ESR1 유전자의 SNP(g.35756T>C)와 연관성 분석)

  • Cho, Eun-Seok;Kim, Ki-Hyun;Woo, Jae-Seok;Lee, Mi-Jin;Ko, Jun-Ho;Kim, Young-Ju;Sa, Soo-Jin
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.143-147
    • /
    • 2015
  • Cryopreservation of boar semen is continually researched in reproductive technologies and genetic resource banking in breed conservation. For evaluating the boar semen quality, sperm motility (MOT) is an important parameter because the movement of spermatozoa indicates active metabolism, membrane integrity and fertilizing capacity. Various researches have been trying to improve the quality of semen Post-thawed in boar. Recently, polymorphism (g. 35756 T>C) of Estrogen Receptor 1 (ESR1) gene reported to be significant association with MOT. This study was conducted to evaluate the ESR1 gene as a positional controlling for motility and kinematic characteristics of post-thawed boar semen. To results, The g.35756 T>C SNP of ESR1 was significantly associated with frozen semen motility and kinematic characteristics. The g.35756 T>C SNP was high significantly associated with MOT, VCL, VSL and VAP (p<0.001). The SNP was also significantly associated with ALH (P<0.05). Therefore, we suggest that the g. 35756 T>C polymorphism in the intron 1 region of the porcine ESR1 gene could potentially be applied in frozen semen programs to improve MOT trait, but only after validation in other populations.

Association Study Analysis of Cluster-of-Differentiation Antigen 9 (CD9) Gene Polymorphism (g.358A>T) for Duroc Boar Post-thawed Semen Motility and Kinematic Characteristics

  • Cho, Eun-Seok;Sa, Soo-Jin;Kim, Ki-Hyun;Lee, Mi-Jin;Ko, Jun-Ho;Kim, Young-Ju;Seol, Kuk-Hwan;Hong, Joon-ki;Kim, Kwang-Sik;Kim, Yong-Min;Woo, Jae-Seok
    • Journal of Embryo Transfer
    • /
    • v.30 no.2
    • /
    • pp.109-114
    • /
    • 2015
  • Cryopreservation of boar semen is continually researched in reproductive technologies and genetic resource banking in breed conservation. For evaluating the boar semen quality, sperm motility (MOT) is an important parameter because the movement of spermatozoa indicates active metabolism, membrane integrity and fertilizing capacity. Various researches have been trying to improve the quality of semen post-thawed in boar. Recently, polymorphism (g.358A>T) of cluster-of-differentiation antigen 9 (CD9) gene reported to be significant association with MOT. Also, CD9 gene was expressed in the male germ line stem cells is crucial for sperm-egg fusion, and was therefore selected as candidate gene for boar semen. This study was conducted to evaluate the pig SNP (g.358A>T) of CD9 gene as a positional controlling for semen parameters of post-thawed boar semen. To results, the g.358A>T SNP of the CD9 gene was significantly associated with the traits such as MOT, curve linear velocity, straight line velocity, average path velocity and amplitude of lateral head displacement. Particularly, the g.358A>T SNP significantly has the highest association with MOT and animals with AA genotype (p<0.001). Therefore, we suggest that the g.358A>T in the intron 6 region of the porcine CD9 may be used as a molecular marker for Duroc boar Post-thawed semen quality, although its functional effect was not defined yet.