플리커, 페이스북과 같은 대용량 소셜 미디어 공유 사이트의 발전으로 이미지 정보가 매우 빠르게 증가하고 있다. 이에 따라 소셜 이미지를 정확하게 검색하기 위한 다양한 연구가 활발히 진행되고 있다. 이미지 태그들의 의미적 연관성을 이용하여 태그기반의 이미지 검색의 정확도를 높이고자 하는 연구를 비롯하여 이미지 단어집(Bag of Visual Words)을 기반으로 웹 이미지를 분류하는 연구도 다양하게 진행되고 있다. 본 논문에서는 이미지에서 배경과 같은 중요도가 떨어지는 정보를 제거하여 중요부분을 찾는 GBVS(Graph Based Visual Saliency)모델을 기존 연구에 사용할 것을 제안한다. 제안하는 방법은 첫 번째, 이미지 태그들의 의미적 연관성을 이용해 1차 분류된 데이터베이스에 SIFT알고리즘을 사용하여 이미지 단어집(BoVW)을 만든다. 두 번째, 테스트할 이미지에 GBVS를 통해서 이미지의 관심영역을 선택하여 테스트한다. 의미연관성 태그와 SIFT기반의 이미지 단어집을 사용한 기존의 방법에 GBVS를 적용한 결과 더 높은 정확도를 보임을 확인하였다.
이미지를 분류하고 검색하는 기술(Image retrieval)중 하나인 Bag of visual words(BoVW)는 특징점(feature point)을 이용하는 방법으로 데이터베이스의 이미지 특징벡터들의 분포를 통해 쿼리 이미지를 자동으로 분류하고 검색해주는 시스템이다. Words를 구성하는데 특징벡터만을 이용하는 기존의 방법은 이용자가 원하지 않는 이미지를 검색하거나 분류할 수 있다. 이러한 단점을 해결하기 위해 특징벡터뿐만 아니라 이미지의 전체적인 분위기를 표현할 수 있는 색상정보나 반복되는 패턴 정보를 표현할 수 있는 텍스처 정보를 Words를 구성하는데 포함시킴으로서 다양한 검색을 가능하게 한다. 실험 부분에서는 특징정보만을 가진 words를 이용해 이미지를 분류한 결과와 색상정보와 텍스처 정보가 추가된 words를 가지고 이미지를 분류한 결과를 비교하였고 새로운 방법은 80~90%의 정확도를 나타내었다.
Mansourian, Leila;Abdullah, Muhamad Taufik;Abdullah, Lilli Nurliyana;Azman, Azreen;Mustaffa, Mas Rina
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권2호
/
pp.769-786
/
2016
Object recognition and object location have always drawn much interest. Also, recently various computational models have been designed. One of the big issues in this domain is the lack of an appropriate model for extracting important part of the picture and estimating the object place in the same environments that caused low accuracy. To solve this problem, a new Salient Based Bag of Visual Word (SBBoVW) model for object recognition and object location estimation is presented. Contributions lied in the present study are two-fold. One is to introduce a new approach, which is a Salient Based Bag of Visual Word model (SBBoVW) to recognize difficult objects that have had low accuracy in previous methods. This method integrates SIFT features of the original and salient parts of pictures and fuses them together to generate better codebooks using bag of visual word method. The second contribution is to introduce a new algorithm for finding object place based on the salient map automatically. The performance evaluation on several data sets proves that the new approach outperforms other state-of-the-arts.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권4호
/
pp.2093-2108
/
2017
In this paper, we describe a novel method for recognizing human actions from different views via view knowledge transfer. Our approach is characterized by two aspects: 1) We propose a unsupervised topic transfer model (TTM) to model two view-dependent vocabularies, where the original bag of visual words (BoVW) representation can be transferred into a bag of topics (BoT) representation. The higher-level BoT features, which can be shared across views, can connect action models for different views. 2) Our features make it possible to obtain a discriminative model of action under one view and categorize actions in another view. We tested our approach on the IXMAS data set, and the results are promising, given such a simple approach. In addition, we also demonstrate a supervised topic transfer model (STTM), which can combine transfer feature learning and discriminative classifier learning into one framework.
팔레놉시스 PLB (protocorm-like bodies) 조직을 이용하여 대량증식 및 신초재분화 체계 확립을 위하여 다양한 증식배지, 액체배지와 고체배지의 효과, sucrose 농도 등이 PLB 증식과 신초 재분화에 효과가 있는지 그리고 활성탄소, citric acid 및 ascorbic acid 등이 팔레놉시스 PLB 배양시 갈변화 현상을 감소하는데 효과가 있는지 알아 보고자 본 연구를 수행하였다. 그 결과, 난과 식물에서 증식배지로 널리 사용되는 VW, HCa, Orchimax 및 Kudson C 배지 중 VW 배지가 PLB 증식에서 타 배지와 비교해서 최소 1.3배에서 최대 2배의 증식효율 그리고 신초 재분화에서도 50% 이상 높은 효율을 보여 주었다. 최적 배지로 선정된 VW배지에 apple powder 및 banana powder를 첨가한 VWAB 배지를 기반으로 액체 및 고체배양에서 PLB 증식효율과 신초재분화율을 비교한 결과, 통계적으로 유의한 차이는 발견되지 않았다. Sucrose 농도를 0 ~ 50 g 처리한 실험에서는 PLB 증식과 재분화 효율 둘 다 10 g 처리구에서 가장 좋은 결과를 보여 주었다. 마지막으로 팔레놉시스 PLB 증식 및 재분화 과정에서 자주 발생하는 갈변화를 감소시키기 위하여 활성탄소, citric acid와 ascorbic acid를 처리한 실험에서는 활성탄소 1 g이 1.5%의 가장 낮은 갈변율을 나타내었다. 이러한 실험결과는 향후 팔레놉시스 PLB를 이용한 대량증식 및 재분화 체계 확립에 크게 기여하리라 판단된다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권7호
/
pp.2633-2648
/
2015
The problem of visual words' synonymy and ambiguity always exist in the conventional bag of visual words (BoVW) model based object category methods. Besides, the noisy visual words, so-called "visual stop-words" will degrade the semantic resolution of visual dictionary. In view of this, a novel bag of visual words method based on PLSA and chi-square model for object category is proposed. Firstly, Probabilistic Latent Semantic Analysis (PLSA) is used to analyze the semantic co-occurrence probability of visual words, infer the latent semantic topics in images, and get the latent topic distributions induced by the words. Secondly, the KL divergence is adopt to measure the semantic distance between visual words, which can get semantically related homoionym. Then, adaptive soft-assignment strategy is combined to realize the soft mapping between SIFT features and some homoionym. Finally, the chi-square model is introduced to eliminate the "visual stop-words" and reconstruct the visual vocabulary histograms. Moreover, SVM (Support Vector Machine) is applied to accomplish object classification. Experimental results indicated that the synonymy and ambiguity problems of visual words can be overcome effectively. The distinguish ability of visual semantic resolution as well as the object classification performance are substantially boosted compared with the traditional methods.
최근 인터넷, IPTV/SMART TV, 소셜 네트워크 (social network)와 같은 정보 유통 채널의 다양화로 유해 비디오 분류 및 차단 기술 연구에 대한 요구가 높아가고 있으나, 현재까지는 비디오에 대한 유해성을 판단하는 연구는 부족한 실정이다. 기존 유해 이미지 분류 연구에서는 이미지에서의 피부 영역의 비율이나 Bag of Visual Words (BoVW)와 같은 공간적 특징들 (spatial features)을 이용하고 있다. 그러나, 비디오에서는 공간적 특징 이외에도 모션 반복성 특징이나 시간적 상관성 (temporal correlation)과 같은 시간적 특징들 (temporal features)을 추가적으로 이용하여 유해성을 판단할 수 있다. 기존의 유해 비디오 분류 연구에서는 공간적 특징과 시간적 특징들에서 하나의 특징만을 사용하거나 두 개의 특징들을 단순히 결정 단계에서 데이터 융합하여 사용하고 있다. 일반적으로 결정 단계 데이터 융합 방법은 특징 단계 데이터 융합 방법보다 높은 성능을 가지지 못한다. 본 논문에서는 기존의 유해 비디오 분류 연구에서 사용되고 있는 공간적 특징과 시간적 특징들을 특징 단계 융합 방법을 이용하여 융합하여 유해 비디오를 분류하는 방법을 제안한다. 실험에서는 사용되는 특징이 늘어남에 따른 분류 성능 변화와 데이터 융합 방법의 변화에 따른 분류 성능 변화를 보였다. 공간적 특징만을 이용하였을 때에는 92.25%의 유해 비디오 분류 성능을 보이는데 반해, 모션 반복성 특징을 이용하고 특징 단계 데이터 융합 방법을 이용하게 되면 96%의 향상된 분류 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.