• 제목/요약/키워드: BoF(Bag of Features)

검색결과 6건 처리시간 0.035초

가중치 기반 Bag-of-Feature와 앙상블 결정 트리를 이용한 정지 영상에서의 인간 행동 인식 (Human Action Recognition in Still Image Using Weighted Bag-of-Features and Ensemble Decision Trees)

  • 홍준혁;고병철;남재열
    • 한국통신학회논문지
    • /
    • 제38A권1호
    • /
    • pp.1-9
    • /
    • 2013
  • 본 논문에서는 CS-LBP (Center-Symmetric Local Binary Pattern) 특징과 공간 피라미드를 이용한 BoF (Bag of Features)를 생성하고 이를 랜덤 포레스트(Random Forest) 분류기에 적용하여 인간의 행동을 인식하는 알고리즘을 제안한다. BoF를 생성하기 위해 영상을 균일한 패치로 나누고, 각 패치 마다 CS-LBP 특징을 추출한다. 행동 분류 성능을 향상시키기 위해 패치들마다 추출한 특징벡터들에 대해 K-mean 클러스터링을 적용하여 코드 북을 생성한다. 본 논문에서는 영상의 지역적인 특성을 고려하기 위해 공간 피라미드 방법을 적용하고 각 공간 레벨에서 추출된 BoF에 대해 가중치를 적용하여 최종적으로 하나의 특징 벡터로 결합한다. 행동 분류를 위해 결정트리의 앙상블로 이루어진 랜덤 포레스트는 학습 단계에서 각 행동 클래스를 위한 분류 모델을 만든다. 가중 BoF가 적용된 랜덤 포레스트는 다양한 인간 행동 영상을 포함하고 있는 Standford Actions 40 데이터를 성공적으로 분류하였다. 또한 기존 방법에 비해 분류 성능이 유사하거나 우수하며, 한 장의 영상에 대해 빠른 인식속도를 보였다.

SIFT 기술자 이진화를 이용한 근-복사 이미지 검출 후-검증 방법 (A Post-Verification Method of Near-Duplicate Image Detection using SIFT Descriptor Binarization)

  • 이유진;낭종호
    • 정보과학회 논문지
    • /
    • 제42권6호
    • /
    • pp.699-706
    • /
    • 2015
  • 최근 이미지 컨텐츠에 쉽게 접근할 수 있는 인터넷 환경과 이미지 편집 기술들의 보급으로 근-복사 이미지가 폭발적으로 증가하면서 관련 연구가 활발하게 이루어지고 있다. 그러나 근-복사 이미지 검출 방법으로 주로 쓰이는 BoF(Bag-of-Feature)는 고차원의 지역 특징을 저차원으로 근사화하는 양자화과정에서 서로 다른 특징들을 같다고 하거나 같은 특징을 다르다고 하는 한계가 발생할 수 있으므로 이를 극복하기 위한 후-검증 방법이 필요하다. 본 논문에서는 BoF의 후-검증 방법으로 SIFT(Scale Invariant Feature Transform) 기술자를 128bit의 이진 코드로 변환한 후 BoF 방법에 의하여 추출된 짧은 후보 리스트에 대하여 변환한 코드들간의 거리를 비교하는 방법을 제안하고 성능을 분석하였다. 1500장의 원본이미지들에 대한 실험을 통하여 기존의 BoF 방법과 비교하여 근-복사 이미지 검출 정확도가 4% 향상됨을 보였다.

시공간 2D 특징 설명자를 사용한 BOF 방식의 동작인식 (BoF based Action Recognition using Spatio-Temporal 2D Descriptor)

  • 김진옥
    • 인터넷정보학회논문지
    • /
    • 제16권3호
    • /
    • pp.21-32
    • /
    • 2015
  • 동작인식 연구에서 비디오를 표현하는 시공간 부분 특징이 모델 없는 상향식 방식의 주요 주제가 되면서 동작 특징을 검출하고 표현하는 방법이 여러 연구를 통해 다양하게 제안되고 있다. 그 중에서 BoF(bag of features)방식은 가장 일관성 있는 인식 결과를 보여주고 있다. 비디오의 동작을 BoF로 나타내기 위해서는 어떻게 동작의 역동적 정보를 표현할 것인가가 가장 중요한 부분이다. 그래서 기존 연구에서는 비디오를 시공간 볼륨으로 간주하고 3D 동작 특징점 주변의 볼륨 패치를 복잡하게 설명하는 것이 가장 일반적인 방법이다. 본 연구에서는 기존 3D 기반 방식을 간략화하여 비디오의 동작을 BoF로 표현할 때 비디오에서 2D 특징점을 직접 수집하는 방식을 제안한다. 제안 방식의 기본 아이디어는 일반적 공간프레임의 2D xy 평면뿐만 아니라 시공간 프레임으로 불리는 시간축 평면에서 동작 특징점을 추출하여 표현하는 것으로 특징점이 비디오에서 역동적 동작 정보를 포착하기 때문에 동작 표현 특징 설명자를 3D로 확장할 필요 없이 2D 설명자만으로 간단하게 동작인식이 가능하다. SIFT, SURF 특징 표현 설명자로 표현하는 시공간 BoF 방식을 주요 동작인식 데이터에 적용하여 우수한 동작 인식율을 보였다. 3D기반의 HoG/HoF 설명자와 비교한 경우에도 제안 방식이 더 계산하기 쉽고 단순하게 이해할 수 있다.

Random Forest 분류기와 Bag-of-Feature 특징 히스토그램을 이용한 의료영상 자동 분류 및 검색 (Medical Image Classification and Retrieval Using BoF Feature Histogram with Random Forest Classifier)

  • 손정은;고병철;남재열
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권4호
    • /
    • pp.273-280
    • /
    • 2013
  • 본 논문에서는 의료영상의 특성을 반영하여 픽셀 그래디언트의 방향 값을 특징으로 하는 OCS-LBP (Oriented Center Symmetric Local Binary Patterns) 특징을 개발하고 BoF(Bag-of-Feature)와 Random Forest 분류기를 이용한 영상 검색 방법을 제안한다. 학습영상에서 추출된 특징 값은 code book 으로 군집화 되고, 각 영상들은 code book을 통해 의미 있는 새로운 차원인 BoF특징으로 변환된다. 이렇게 추출된 BoF특징은 Random Forest 분류기에 적용되고 학습된 분류기에 의해 유사한 특성을 갖는 N개의 클래스별로 분류되게 된다. 질의 영상이 입력되면 동일한 OCS-LBP특징이 추출되고 code book을 통해 BoF특징이 추출된다. 전통적인 내용기반 영상검색과는 다르게, 본 논문에서는 질의 영상에서 추출된 BoF특징이 학습된 Random Forest에 적용되어 가장 유사한 K-근접 이웃 (K-nearest neighbor) 클래스들을 선택하고 선택된 클래스들에 포함된 영상들에 대해서만 질의 영상과의 BoF 유사도 측정을 통해 최종 유사한 영상을 검색하게 된다. 실험결과에서 본 논문에서 제안하는 방법은 빠르고 우수한 검색 성능을 보여 주었다.

Handwritten Indic Digit Recognition using Deep Hybrid Capsule Network

  • Mohammad Reduanul Haque;Rubaiya Hafiz;Mohammad Zahidul Islam;Mohammad Shorif Uddin
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.89-94
    • /
    • 2024
  • Indian subcontinent is a birthplace of multilingual people where documents such as job application form, passport, number plate identification, and so forth is composed of text contents written in different languages/scripts. These scripts may be in the form of different indic numerals in a single document page. Due to this reason, building a generic recognizer that is capable of recognizing handwritten indic digits written by diverse writers is needed. Also, a lot of work has been done for various non-Indic numerals particularly, in case of Roman, but, in case of Indic digits, the research is limited. Moreover, most of the research focuses with only on MNIST datasets or with only single datasets, either because of time restraints or because the model is tailored to a specific task. In this work, a hybrid model is proposed to recognize all available indic handwritten digit images using the existing benchmark datasets. The proposed method bridges the automatically learnt features of Capsule Network with hand crafted Bag of Feature (BoF) extraction method. Along the way, we analyze (1) the successes (2) explore whether this method will perform well on more difficult conditions i.e. noise, color, affine transformations, intra-class variation, natural scenes. Experimental results show that the hybrid method gives better accuracy in comparison with Capsule Network.

밀리미터파 레이더 기반 손동작 인식 시스템 및 알고리즘에 관한 연구 (Study on the Hand Gesture Recognition System and Algorithm based on Millimeter Wave Radar)

  • 이영석
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권3호
    • /
    • pp.251-256
    • /
    • 2019
  • 본 연구에서는 손동작을 인식하기 위하여 밀리미터파 기반 레이더에서 얻어진 손동작의 주파수 반향 특성을 이용하는 알고리즘 및 시스템을 제안하였다. 제안된 시스템은 밀리미터파 아날로그 송수신부, ADC부 및 신호 처리부가 원칩으로 구현된 시스템을 이용하여 데이터를 수집하도록 구성하였고, 제안한 알고리즘은 반사된 주파수 영상의 제르니케모멘트로부터 얻어진 전역 및 지역 디스크립터로 구성된 BoF에서 K-means 클러스터링을 이용하여 코드 워드를 생성하고 SVM을 이용한 손동작 분류를 수행하였다. 수행 결과는 혼동행렬에서 얻어진 정밀도, 민감도 및 정확도를 이용하여 평가였다. 정확도 평가에서는 제안한 방법은 GZM방법 및 LZM방법과 비교하여 성능 평가를 위한 인덱스에서 제안한 방법이 95.6%의 성능을 보였고 비교한 나머지 두 방법은 88.4% 및 84%을 나타내어 제안한 방법이 기존의 두 방법에 비하여 7~8% 성능이 향상되었으며 정밀도 및 민감도에서도 나머지 두 방법에 대하여 향상된 성능을 나타내었다. 제안한 방법은 소형화된 밀리미터파 기반 레이더를 이용하여 동작 인식을 할 수 있는 임베디드 시스템의 응용가능성을 보여준다.