• Title/Summary/Keyword: Bluetooth Low Energy

Search Result 166, Processing Time 0.025 seconds

A Study on Comparison of Control Methods in Wireless Power Transfer Systems (무선전력전송시스템 제어 기술 비교 연구)

  • Jang, Dong-won;Cho, In-Kwee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.113-116
    • /
    • 2015
  • This paper presented about the system for controlling a wireless power transmission using bluetooth protocol. Bluetooth protocol has been applied in many fields that communicate with data and audio signal in short range. Recently, however, Bluetooth low energy(BLE) more simple than the existing protocol is standardized and is widely used in medical applications and consumer electronics that handle small amount of sensor data and transmit by the low power control signal. It has also been adopted as the standard for the control in the wireless power transfer system. In this paper, We analysed and described the bluetooth low energy protocol techniques for controlling the wireless power transfer system.

  • PDF

Bluetooth Low-Energy Current Sensor Compensated Using Piecewise Linear Model

  • Shin, Jung-Won
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.283-292
    • /
    • 2020
  • Current sensors that use a Hall element and Hall IC to measure the magnetic fields generated in steel silicon core gaps do not distinguish between direct and alternating currents. Thus, they are primarily used to measure direct current (DC) in industrial equipment. Although such sensors can measure the DC when installed in expensive equipment, ascertaining problems becomes difficult if the equipment is set up in an unexposed space. The control box is only opened during scheduled maintenance or when anomalies occur. Therefore, in this paper, a method is proposed for facilitating the safety management and maintenance of equipment when necessary, instead of waiting for anomalies or scheduled maintenance. A Bluetooth 4.0 low-energy current-sensor system based on near-field communication is used, which compensates for the nonlinearity of the current-sensor output signal using a piecewise linear model. The sensor is controlled using its generic attribute profile. Sensor nodes and cell phones used to check the signals obtained from the sensor at 50-A input currents showed an accuracy of ±1%, exhibiting linearity in all communications within the range of 0 to 50 A, with a stable output voltage for each communication segment.

Implementation of Low Power Drying System with Bluetooth Communication (블루투스 통신을 갖는 저전력 건조 시스템 구현)

  • Kim, Young-Bin;Ryu, Conan.K.R
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.626-629
    • /
    • 2021
  • Recent home appliances requires convenience and low-power consumption. A convenient devices should be simple to control while having several functions. Intelligent sensors and utilization technologies are required to reduce energy consumption. This paper provides a smart drying system with Bluetooth communication function and energy reduction function. Design a control system that uses the Bluetooth function so that the smartphone monitors the drying control and the internal humidity condition. By detecting the humidity inside the dryer and controlling the speed of the motor, it has an energy-saving function.

  • PDF

Design and Implementation of Prototype Model for Infant Care system using Smart Phone (스마트폰을 이용한 Infant Care 시스템의 프로트 타입모델 설계 및 구현)

  • Choi, Sung-Jai
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.103-109
    • /
    • 2022
  • This significance of the infant care system has emerged due to sudden infant death during sleeping. This paper presented a design and implementation of a prototype model, which is a infant care device controlled by a smartphone using Bluetooth technology. Prototype Device Model consists of MCU(microcontroller unit), Accelerometer Sensor, Temperature Measuring Sensor, Sound Measuring Sensor, Bluetooth Module, and Camera Module. The proposed application transfers the information to the parent's smartphone and computers, such as infant's falling, crying, and fever detection. A test verified the availability of a prototype infant care system model using Bluetooth Low Energy with operating the low power driving.

Design of Vehicle Security Authentication System Using Bluetooth 4.0 Technology (블루투스 4.0 기술을 이용한 차량용 보안인증 시스템 설계)

  • Yu, Hwan-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.325-330
    • /
    • 2017
  • Bluetooth 4.0 is a technology suitable for the Internet of things that is used for communication between various devices. This technology is suitable for developing a service by combining with automobiles. In this study, a security authentication system was designed by linking Bluetooth 4.0 technology and a vehicle system as an implementation example of an object internet service. A procedure was designed for security authentication and an authentication method is proposed using a data server. When the security authentication function is provided, various additional services can be developed using the information collection function of the risk notification and user action history. In addition, BLE (Bluetooth Low Energy) technology, which is a wireless communication technology that enables low-power communication and low-power communication in the process of the standardization and development of Bluetooth technology and technology, improves the battery life through the use of RFID or NFC This study expanded the range possible. The security service can be extended by expanding the scope of authentication by the contactless type. Using the proposed system, a customized service can be provided while overcoming the problems of an existing radio frequency (RF)-based system, portability, and battery usage problem.

Examining the Influence of TBM Chamber Condition and Transmission Distance on the Received Strength of Bluetooth Low Energy Signals: A Laboratory Simulation Experiment (TBM 챔버 상태와 전송 거리에 따른 저전력 블루투스 신호의 수신 강도 분석: 실험실 모사 실험)

  • Yosoon Choi;Hoyoung Jeong;Jeongju Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.425-434
    • /
    • 2023
  • To measure the wear amount of the TBM disk cutter in real time, it is important not only to automate the measurement using sensors, but also to stably transmit the measured data to the information processing system. In this study, we investigated the viability of utilizing Bluetooth Low Energy (BLE) technology to wirelessly transmit sensor data from the TBM cutter head to a receiver located at the chamber's rear. Through laboratory experiments, we analyzed the Received Signal Strength Index (RSSI) of the receiver considering various signal strength of the transmitter, separation distances between the transmitter and receiver and chamber fill materials. Our results demonstrate that wireless data transmission is feasible across all tested conditions when the transmitter signal strength is 0 dBm or higher.

An Analysis on the Number of Advertisements for Device Discovery in the Bluetooth Low Energy Network (저전력 블루투스 네트워크에서 장치 탐색을 위한 Advertising 횟수에 관한 분석)

  • Kim, Myoung Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.3-12
    • /
    • 2016
  • Bluetooth Low Energy (BLE) protocol has attracted attention as a promising technology for low data throughput and low energy wireless sensor networks. Fast device discovery is very important in a BLE based wireless network. It is necessary to configure the network to work with minimized energy consumption because the BLE network nodes are expected to operate a long time typically on a coin cell battery. However, since it is difficult to obtain low energy and low latency at the same time, the BLE standard introduces wide range setting of parameters related to device discovery process and let the network operators to set up parameter values for the application. Therefore, it is necessary to analyze the performance of device discovery according to the related parameter values prior to BLE network operation. In this paper we analyze the expected value and the cumulative distribution function of the number of advertisements for device discovery in the BLE network. In addition, we propose a scheme for controlling the interval between advertising events that can improve the performance of device discovery without increasing energy consumption.

Design and Implementation of prototype model of Smart Diffuser using Smart Phone (스마트폰을 이용한 스마트 디퓨저의 프로토 타입 모델 설계 및 구현)

  • Choi, Sung-Jai
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.149-154
    • /
    • 2020
  • This paper presented a design and a implementation of prototype model which is the smart diffuser device controlled by using Bluetooth technology in the smart phone. We used the ultrasonic waves oscillator so that the smart diffuser was able to spray oil into a device. The device was developed to find out the high brightness led colors switched during spraying the oil. By using the Li-Po battery of 40mAh capacity, we were able to design this portable device was prolonged available time to use and to solve the charging time problem. We realized the availability of prototype model which is using the Bluetooth Low Energy for operating the low power driving.

MEMS Embedded System Design (MEMS 임베디드 시스템 설계)

  • Hong, Seon Hack
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.47-54
    • /
    • 2022
  • In this paper, MEMS embedded system design implemented the sensor events via analyzing the characteristics that dynamically happened to an abnormal status in power IoT environments in order to guarantee a maintainable operation. We used three kinds of tools in this paper, at first Bluetooth Low Energy (BLE) technology which is a suitable protocol that provides a low data rate, low power consumption, and low-cost sensor applications. Secondly LSM6DSOX, a system-in-module containing a 3-axis digital accelerometer and gyroscope with low-power features for optimal motion. Thirdly BM1422AGMV Digital Magnetometer IC, a 3-axis magnetic sensor with an I2C interface and a magnetic measurable range of ±120 uT, which incorporates magneto-impedance elements to detect the magnetic field when the current flowed in the power devices. The proposed MEMS system was developed based on an nRF5340 System on Chip (SoC), previously compared to the standalone embedded system without bluetooth technology via mobile App. And also, MEMS embedded system with BLE 5.0 technology broadcasted the MEMS system status to Android mobile server. The experiment results enhanced the performance of MEMS system design by combination of sensors, BLE technology and mobile application.

Study on the Security Threats Factors of A Bluetooth Low Energy (저전력 블루투스의 보안 위협 요인들에 관한 연구)

  • Jeon, Jeong Hoo
    • Convergence Security Journal
    • /
    • v.17 no.4
    • /
    • pp.3-9
    • /
    • 2017
  • Recently, Wireless communication has been widely used as a short distance communication medium in various industrial fields as well as communication connection between home appliances due to the appearance of the Internet of Things. And Most commonly used wireless communication media include WiFi, Bluetooth, and NFC. Among them, Bluetooth is widely used for communication between smart devices as well as computer peripheral devices. And Bluetooth in the home network fields is being used to control electronic products. However, since Bluetooth security vulnerabilities are known, more and more attacks are being exploited. As the application range of Bluetooth is expanding, it is necessary to prepare countermeasures accordingly. Therefore, this study investigates the security threat factors of through Bluetooth'attack case and attack technology. And By proposing countermeasures against this problem, we intend to utilize it as data for improving the security of wireless network service in the future.