• Title/Summary/Keyword: Bluetooth

Search Result 1,533, Processing Time 0.028 seconds

Image Based Human Action Recognition System to Support the Blind (시각장애인 보조를 위한 영상기반 휴먼 행동 인식 시스템)

  • Ko, ByoungChul;Hwang, Mincheol;Nam, Jae-Yeal
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.138-143
    • /
    • 2015
  • In this paper we develop a novel human action recognition system based on communication between an ear-mounted Bluetooth camera and an action recognition server to aid scene recognition for the blind. First, if the blind capture an image of a specific location using the ear-mounted camera, the captured image is transmitted to the recognition server using a smartphone that is synchronized with the camera. The recognition server sequentially performs human detection, object detection and action recognition by analyzing human poses. The recognized action information is retransmitted to the smartphone and the user can hear the action information through the text-to-speech (TTS). Experimental results using the proposed system showed a 60.7% action recognition performance on the test data captured in indoor and outdoor environments.

CMP process monitoring system using AE sensor (AE를 이용한 CMP 공정 감시에 관한 연구)

  • Park, Sun-Joon;Kim, Sung-Ryul;Park, Boum-Young;Lee, Hyun-Seop;Jeong, Hea-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.51-52
    • /
    • 2007
  • This paper compared wired Acoustic Emission (AE) signals with wireless AE signals. According to the material and process condition, each process signal has distinguishable characteristic to show each removal phenomenon. Therefore, wired and wireless AE sensors having different bandwidth are complementary for CMP process monitoring. Especially, the AE sensor was used to investigate abrasive and molecular-scale phenomena during CMP process, which was compatible to acquire high level frequency. In experiment, wireless AE system was used to get signals in rotary system, using bluetooth. But, it is possible to acquire only RMS signals, which can not analyze abrasive and molecular-sale phenomena. Second, wired AE system was installed using mercury slip-ring, which is suitable not only for rotation equipment but also for acquiring original signals. The acquired signals were analyzed by FFT for understanding of abrasive and molecular revel phenomena in CMP process, finally, we verified that two types of AE sensor with different bandwidth were complementary for CMP process monitoring.

  • PDF

A Development of an Insole Type Local Shear Measurement Transducer and Measurements of Local Plantar Shear Force During Gait (인솔형 국부 전단센서의 개발 및 보행 시 발바닥의 국부 전단력 측정)

  • Jeong Im Sook;Ahn Seung Chan;Yi Jin Bok;Kim Han Sung;Kim Young Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.213-221
    • /
    • 2005
  • An insole type local shear force measurement system was developed and local shear stresses in the foot were measured during level walking. The shear force transducer based on the magneto-resistive principle, was a rigid 3-layer circular disc. Sensor calibrations with a specially designed calibration device showed that it provided relatively linear sensor outputs. Shear transducers were mounted on the locations of four metatarsal heads and heel in the insole. Sensor outputs were amplified, decorded in the bluetooth transmission part and then transferred to PC. In order to evaluate the developed system, both shear and plantar pressure measurements, synchronized with the three-dimensional motion analysis system, were performed on twelve young healthy male subjects, walking at their comfortable speeds. The maximum peak pressure during gait was 5.00kPa/B.W at the heel. The time when large local shear stresses were acted correlated well with the time of fast COP movements. The anteroposterior shear was dominant near the COP trajectory, but the mediolateral shear was noted away from the COP trajectory. The vector sum of shear stresses revealed a strong correlation with COP movement velocity. The present study will be helpful to select the material and to design of foot orthoses and orthopedic shoes for diabetic neuropathy or Hansen disease.

An Adaptive Pointing and Correction Algorithm Using the Genetic Algorithm (유전자 알고리즘을 이용한 적응적 포인팅 및 보정 알고리즘)

  • Jo, Jung-Jae;Kim, Young-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.1
    • /
    • pp.67-74
    • /
    • 2013
  • In this paper, we propose the pointing and correction algorithm for optimized performance based on Bluetooth communication. The error from the accelerometer sensor's output must be carefully managed as the accelerometer sensor is more sensitive to data change compared to that of the gyroscope sensor. Thus, we minimize the noise by applying the Kalman filter to data for each axis from the accelerometer. In addition, we can also obtain effect compensating the hand tremor by applying the Kalman filter to the data variation for x and y. In this study, we extract data through the Quaternion mapping process on data from the accelerometer and gyroscope. In turn, we can obtain a tilt compensation by applying a compensation algorithm with acceleration of the gravity of the extracted data. Moreover, in order to correct the inaccuracy on smart sensor due to the rapid movement of a device, we propose a adaptive pointing and correction algorithm using the genetic approach to generate the initial population depending on the user.

Ring-type Heart Rate Sensor and Monitoring system for Sensor Network Application (센서 네트워크 응용을 위한 반지형 맥박센서와 모니터링 시스템)

  • Jang, In-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.619-625
    • /
    • 2007
  • As low power, low cost wireless communication technology like Bluetooth, Zigbee, RFID has been put to practical use together with the wellbeing trend, the concern about ubiquitous health care has been greatly increased and u-Health is becoming one of the most important application in the sensor network field. Especially, development of the medical services to be able to cope with a state of emergency for solitary senior citizens and the aged in silver town is very meaningful itself and their needs are also expected to continuously increase with a rapid increase in an aging population. In this paper we demonstrate the feasibility of extracting accurate heart rate variability (HRV) measurements from photoelectric plethysmography(PPG) signals gathered by a ring type pulse oximeter sensor attached to the finger. For this, we made 2 types of ring sensor, that is reflective and pervious type, and developed the remote monitoring system which is able to collect HR data from ring sensor, analyze and cope with a state of emergency.

Development of Personal Hypertension Management System Using PDA (PDA를 이용한 개인 심혈관리 시스템 개발)

  • Kwon, Seok-Young;Kwon, Mann-Jun;Park, Kyoung-Soon;Chun, Myung-Geun;Cha, Eun-Jong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.718-723
    • /
    • 2007
  • In this paper, we developed a personal hypertension management system (PHMS) having self-diagnosis function with PDA. The developed PHMS consists of five modules such as a personal information management, a life management, a food management, a sickness management, and network management modules. The personal information management module offers physical and fatness information as well as personal information. The life management module gives exercise and body mass index. The food management module includes caloric intake and the sickness management module renders a personal blood pressure and a subjective symptom. Finally, wireless networks are implemented for the network management. From these, it is possible to make a self diagnosis and be examined and treated remotely by sending the stored blood pressure related information to a medical doctor.

Immediate Effects of Posteroanterior Cervical Mobilization on Pressure Pain Threshold and Gait Parameters in Patients with Chronic Neck Pain: A Pilot Study

  • Choi, Taeseok;Moon, Okkon;Choi, Wansuk;Heo, Seoyoon;Lee, Sangbin
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.4
    • /
    • pp.1914-1920
    • /
    • 2019
  • Background: Mobilization and cranio-cervical flexion exercise has been reported in reducing pain from cervical part and improving its motor function; also, has been represented that alleviate of neck pain and recover of neck muscles improve the normal gait performance. However, few studies have identified the effects of mobilization and exercise on pain and gait parameters with preceding issues. Objective: To examine the effects or changes of pressure pain threshold (PPT) and gait parameters in patients with chronic neck pain. Design: Cross-Sectional Clinical Trials Methods: Twenty patients with the history of neck pain (>3 months) performed the cervical mobilization and cranio-cervical flexion exercise. Gait parameters were assessed with wireless device and collected data were transmitted to the personal computer via Bluetooth. The PPT was measured posteroanterior direction at the prone position and the mean of subsequent three PPT measurements was used for the final analysis. Results: Both cervical central posteroanterior mobilization (CCPAM) (p<.000) and sling-based cranio-cervical flexion exercise (SBCCFE) (p<.000) group showed a significant increase in the PPT and the gait parameters, cadence (p<.023), was significantly increased in the CCPAM group, however slightly increased in the SBCCFE group. The comparison between the CCPAM and the SBCCFE groups after treatment did not show significant differences for the score on the PPT and gait parameters. Conclusions: This study suggests that CCPAM and SBCCFE increase PPT, cadence, and gait speed.

Design of Electrostatic Monitoring System (정전기 모니터링 시스템 설계)

  • Kim, Kang-Chul;Byon, Chi-Nam;Lim, Chang-Gyoon;Han, Seok-Bung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.2069-2076
    • /
    • 2008
  • In this paper, we develop an electrostatic monitoring system which is composed of an electrostatic prediction system and a warning message transmission system. The electrostatic prediction system in a factory receives the value of electrostatic charge from the electrostatic sensor and predicts the next value by using past data and sends the value to the warning message transmission system through the bluetooth communication. The warning message transmission system gets a warning signal and transmits the warning message to the worker's cellphone through a commercial SMS web by a socket program running on Windows PC in a control room. We propose electrostatic forecasting algorithms based on LSR(least square regression) using weight factors in an electrostatic prediction system. Simulation results show that the algorithm with dynamically variable weight factors is best with 64.69V standard deviation and a warning message transmitted by the warning message transmission system is displayed on cellphone after about 5 seconds.

Proposal for a Peer Decentralized Identity System Using Short-Range Wireless Communications (단거리 무선 통신을 이용한 개인 간 분산 신원증명 시스템 제안)

  • Yeo, Kiho;Park, Keundug;Youm, Heung Youl
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.5
    • /
    • pp.959-972
    • /
    • 2021
  • Decentralized Identity is based on the concept of self-sovereign identity, in which holders manage and provide their own credentials. However, a procedure is required to obtain credentials from issuers, and there is a risk of mess personal information leaking due to negligence of the issuers. In this paper, we propose a peer decentralized identity system based on Peer DID technology that allows only participants to verify their identity in 1:1 or 1:N small groups by matching the holder with the issuer. It is directly connected to a mobile device using short-range wireless communications such as bluetooth, and the holders create and provide their own credentials in person to the other party, thus fully realizing the self-sovereignty identity. The proposed system can simplify the identification process, improve security and privacy, and reduce costs. Furthermore, an extended architecture is possible to connect the proposed system and the distributed ledger to identify users in other domains. In the future, based on various technologies, it is also necessary to expand research on identity systems that can be utilized for human-to-thing and things-to-things authentication.

A Study on the Stabilization of a System for Big Data Transmission of Intelligent Ventilation Window based on Sensor and MCU (센서 및 MCU기반 지능형 환기창 빅데이터전송용 시스템 안정화에 관한 연구)

  • Ryoo, Hee-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.551-558
    • /
    • 2021
  • In this paper, we made the integrated intelligent air ventilation of the actuator module that can be remotely controlled based on IoT and sensors. we implemented a ventilation window system by configuring an algorithm design and a driving circuit to control the operation of the actuator to open and close the ventilation port based on a predetermined number of data that detects indoor gas/CO2/humidity temperature and outdoor fine dust related indoor/outdoor environment. It is difficult to store, manage, and analyze data due to the large number of sensors and conditions for the transmission data of indoor air circulation module. The remote monitoring and remote wireless control screens were constructed to automate the separation and operation conditions by extracting and managing the state. We apply MQTT to enhance big data transmission and construct the system using Rocket MQ to ensure safe transmission of operational big data against system errors.