• 제목/요약/키워드: Blue-light emitting material

검색결과 188건 처리시간 0.027초

Electroluminescent Properties of Spiro[fluorene-benzofluorene]-Containing Blue Light Emitting Materials

  • Jeon, Soon-Ok;Lee, Hyun-Seok;Jeon, Young-Min;Kim, Joon-Woo;Lee, Chil-Won;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권4호
    • /
    • pp.863-868
    • /
    • 2009
  • New spiro[fluorene-7,9′-benzofluorene]-based blue host material, 5-phenyl-spiro[fluorene-7,9′-benzofluorene] (BH-1P), was successfully prepared by reacting 5-bromo-spiro[fluorene-7,9′-benzofluorene] (1) with phenyl boronic acid through the Suzuki reaction. 5-(N,N-Diphenyl)amino-spiro[fluorene-7,9′-benzofluorene] (BH-1DPA) and diphenyl-[4-(2-[1,1;4,1]terphenyl-4-yl-vinyl)-phenyl]amine (BD-1) were used as dopant materials. 2,5-Bis-(2',2"- bipyridin-6-yl)-1,1-diphenyl-3,4-diphenylsilacyclopentadiene (ET4) and Alq3 were used as electron transfer materials. Their UV absorption, photoluminescence and thermal properties were examined. The blue OLEDs with the configuration of ITO/DNTPD/$\alpha$-NPD/BH-1P:5% dopant/$Alq_3$ or ET4/LiF-Al prepared from the BH-1P host and BH-1DPA and BD-1 dopants showed a blue EL spectrum at 452 nm at 10 V and a luminance of 923.9 cd/$m^2$ with an efficiency of 1.27 lm/W at a current density of 72.57 mA/$cm^2$.

n-ZnO/i-ZnO/p-GaN:Mg 이종접합을 이용한 UV 발광 다이오드 (Ultraviolet LEDs using n-ZnO:Ga/i-ZnO/p-GaN:Mg heterojunction)

  • 한원석;김영이;공보현;조형균;이종훈;김홍승
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.50-50
    • /
    • 2008
  • ZnO has been extensively studied for optoelectronic applications such as blue and ultraviolet (UV) light emitters and detectors, because it has a wide band gap (3.37 eV) anda large exciton binding energy of ~60 meV over GaN (~26 meV). However, the fabrication of the light emitting devices using ZnO homojunctions is suffered from the lack of reproducibility of the p-type ZnO with high hall concentration and mobility. Thus, the ZnO-based p-n heterojunction light emitting diode (LED) using p-Si and p-GaN would be expected to exhibit stable device performance compared to the homojunction LED. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducibleavailability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices with low defect density. However, the electroluminescence (EL) of the device using n-ZnO/p-GaN heterojunctions shows the blue and greenish emissions, which are attributed to the emission from the p-GaN and deep-level defects. In this work, the n-ZnO:Ga/p-GaN:Mg heterojunction light emitting diodes (LEDs) were fabricated at different growth temperatures and carrier concentrations in the n-type region. The effects of the growth temperature and carrier concentration on the electrical and emission properties were investigated. The I-V and the EL results showed that the device performance of the heterostructure LEDs, such as turn-on voltage and true ultraviolet emission, developed through the insertion of a thin intrinsic layer between n-ZnO:Ga and p-GaN:Mg. This observation was attributed to a lowering of the energy barriers for the supply of electrons and holes into intrinsic ZnO, and recombination in the intrinsic ZnO with the absence of deep level emission.

  • PDF

Novel transport materials for high-performance fluorescent and phosphorescent OLEDs

  • Bohm, E.;Anemian, R.;Busing, A.;Fortte, R.;Heil, H.;Kaiser, J.;Krober, J.;Leu, S.;Mujica-Fernaud, T.;Parham, A.;Pflumm, C.;Voges, F.
    • Journal of Information Display
    • /
    • 제12권3호
    • /
    • pp.141-144
    • /
    • 2011
  • To improve the performance of blue fluorescent and green phosphorescent organic light-emitting diode devices, Merck developed novel green phosphorescent host and electron-transporting materials. The newly developed electron-transporting material improves the external quantum efficiency of blue fluorescent devices up to 8.7%, with an excellent lifetime. In combination with the newly developed host materials, the efficiency of green phosphorescent devices can be improved by a factor of 1.7, and the lifetime by a factor of 7.

란탄계 금속 착화합물을 이용한 다양한 유기 전기 발광 소자의 연구 (A Study on the Various Organic Electroluminescent Devices Using Lanthanide Chelate Metal Complexes)

  • 표상우;김윤명;이한성;김정수;이승희;김영관
    • 한국전기전자재료학회논문지
    • /
    • 제13권5호
    • /
    • pp.437-443
    • /
    • 2000
  • In this study several lanthanide complexes such as Eu(TTA)$_3$(Phen), Tb(ACAC)$_3$-(Cl-Phen) were synthesized and the white-light electroluminescence(EL) characteristics of their thin films were investigated where the devices having structures of anode/TPD/Tb(ACAC)$_3$(Cl-Phen)/Eu(TTA)$_3$(Phen)/Alq$_3$or Bebq$_2$/cathode and the low work function metal alloy such as Li:Al was used as the electron injecting electrode(cathode). Device structure of glass substrate/ITO/TPD(30nm)/Tb(ACAC)$_3$(Phen)(30nm)/Eu(TTA)$_3$(Phen)(6nm)/DCM doped Alq$_3$(10nm)/Alq$_3$(20nm)/Li:Al(100nm) was also fabricated and their EL characteristics were investigated where Eu(TTA)$_3$(Phen) and DCM doped Alq$_3$were used as red light-emitting materials. It was found that the turn-on voltage of the device with non-doped Alq$_3$was lower than that of the devices with doped Alq$_3$and the blue and red light emission peaks due to TPD and Eu(TTA)$_3$(Phen) with non-doped Alq$_3$were lower than those with DCM doped Alq$_3$Details on the white-light-emitting characteristics of these device structures were explained by the energy and diagrams of various materials used in these structure where the energy levels of new materials such as ionization potential(IP) and electron affinity(EA) were measured by cyclic voltametric method.

  • PDF

The optical characteristics of White LED BLU with tunable chromaticity coordinates

  • Park, D.S.;Park, K.D.;Bae, K.W.;Kim, K.H.;Lim, Y.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1507-1509
    • /
    • 2005
  • LCD(Liquid Crystal Display) products is needed to have high reliability and are produced without harmful material. Because Substitution for CCFL of Light source used to Conventional backlight unit, research is going about product with LED of light source at present. In this experiment, We made the LED backlight unit with high quality for automotivenavigation. This backlight unit has center luminance of 6500 nit at15W power consumption. We adjusted chromaticity by using ten Blue LED and eight side emitting type White LEDs with high power LED from Lumileds company.

  • PDF

박형 디스플레이를 위한 도광판의 광학설계 (Optical Design of Light Guide Plate Material for Slim Liquid Crystal Display)

  • 공태원;최규진;권진혁;박인식;이선묵;우동진;곽진석
    • 한국표면공학회지
    • /
    • 제47권5호
    • /
    • pp.233-238
    • /
    • 2014
  • In this paper, in order to achieve slim and light liquid crystal display, we examine the optical conditions that can obtain uniform light with higher optical efficiency over whole light guide plate (LGP) through simulation. Furthermore, to overcome the issues of hot spot in front of red, green, and blue light emitting diodes (RGB LEDs) source and non-uniform color mixing, we propose four shaped color mixing bars tied up with the LGP and check the optical characteristics of the LGP with them by simulation. Consequently, we could know the optical conditions of improving optical efficiency and optical uniformity in the LGP through the optical design. Also we confirmed that the issues of the hot spot and non-uniform color mixing in edge type LED could be solved by using the ${\bigwedge}$-shaped window color mixing bar.

승화법에 의한 6H-SiC 단결정 성장 (Growth of 6H-SiC Single Crystals by Sublimation Method)

  • 신동욱;김형준
    • 한국결정학회지
    • /
    • 제1권1호
    • /
    • pp.19-28
    • /
    • 1990
  • 단결정 6H-SiC는 에너지갭이 3.0eV인 반도체로서 청색발광소자 및 고온반도체소자로 응용이 기대되는 재료이다. 본 연구에서는 청색발광소자 제작을 위해 6H-SiC 단결정을 승화법으로 성장시켰다. 승화법으로 성장시 성장도가니내의 온도구배를 44℃/cm, 성장온도는 1800-1990℃ 압력은 50-1000 mTorr이었다. 사용한 종자정은 에치슨법으로 성장시킨 SiC 단결정을 사용하였다. 성장된 6H-SiC 결정은 종자징위에 epitaxial growtll를 하였음을 편광현미경과 Back reflection Xray Laue 법으로 확인하였다. 성장조건을 변화시켰을 때 생성되는 결정상의 변화를 XRD로 조사하였다. 성장 온도가 1840℃ 이상일 경우에는 6H-SiC이 성장되었으며, 그 이하에서는 6H-SiC가 성장되었다. 또한 3C-SiC는 저온 저파포화도 성장조건에서 성장되는 상임을 확인하였다. van der Pauw측정법에의한 전기적 특성을 조사하였는데, 전도형은 p형이고 hole 농도와 이동도는 7.6x1014cm-3와 19cm2 V-1sec-1였다.

  • PDF

정공 저지층의 재료변화에 따른 청색유기발광소자의 특성분석 (Analysis of Characteristics of the Blue OLEDs with Changing HBL Materials)

  • 김중연;강명구;오환술
    • 전자공학회논문지 IE
    • /
    • 제43권4호
    • /
    • pp.1-7
    • /
    • 2006
  • 본 연구에서는 정공 저지층이 없는 Type I과 정공 저지층으로 두께가 30${\AA}$인 BCP와 BAlq 재료를 사용한 Type II의 청색 유기발광소자를 제작하였다. ITO 박막 위에 $N_2$ 가스에서 플라즈마 출력이 200 W 일 때, 5.02 eV의 일함수 값을 갖는 ITO를 얻을 수 있었다. Type I 소자는 ITO/2-TNATA/$\alpha$-NPD/DPVBi/$Alq_3$/LiF/Al:Li 구조로 되어 있으며, Type II 소자는 ITO/2-TNATA/$\alpha$-NPD/DPVBi/정공 저지층/$Alq_3$/LiF/Al:Li 구조로 되어 있다. Type I과 Type II 소자의 특성을 비교하였다 제작된 소자 중에서 특성이 가장 우수한 것은 정공 저지층으로 두께가 30${\AA}$인 BAlq 재료를 사용한 Type II 소자이었고, 인가전압 10 V 에서 소자의 전류밀도는 226.75$mA/cm^2$, 휘도는 10,310$cd/cm^2$, 발광효율은 4.55 cd/A, 전력효율은 1.43 lm/W 이었다. EL 스펙트럼의 최대 발광 파장은 456 nm 반치폭은 57 nm 이었고 색좌표값은 x = 0.1438, y = 0.1580 로 NTSC 색좌표 Deep blue영역(x = 014, y = 0.08)에 근접한 순수한 청색에 가까운 값을 얻었다.

발광층 내의 스페이서가 인광 OLED의 효율 및 발광 특성에 미치는 영향 (Effects of Spacer Inserted Inside the Emission Layer on the Efficiency and Emission Characteristics of Phosphorescent Organic Light-emitting Diodes)

  • 서유석;문대규
    • 한국전기전자재료학회논문지
    • /
    • 제27권6호
    • /
    • pp.377-382
    • /
    • 2014
  • We have investigated the effects of spacer layer inserted between blue and red doped emission layers on the emission and efficiency characteristics of phosphorescent OLEDs. N,N'-di-carbazolyl-3,5-benzene (mCP) was used as a host layer. Iridium(III)bis[(4,6-di-fluorophenyl)- pyridinato-N,$C^2$']picolinate (FIrpic) and tris(1-phenyl-isoquinolinato-$C^2$,N)iridium(III) [Ir(piq)3] were used as blue and red dopants, respectively. The emission layer structure was mCP (1-x) nm/mCP:$Ir(piq)_3$ (5 nm, 10%)/mCP (x nm)/mCP:FIrpic (5 nm, 10%). The thickness of mCP spacer layer was varied from 0 to 15 nm. The emission from $Ir(piq)_3$ and the efficiency of the device were dominated by energy transfer from mCP host and FIrpic molecules, and by diffusion of mCP host triplet excitons.

Optical Properties of Poly(N-arylcarbazole-alt-aniline) Copolymers For Polymer Light Emitting Devices

  • Wang, Hui;Ryu, Jeong-Tak;Kim, Yeon-Bo;Kwon, Young-Hwan
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 영호남 합동 학술대회 및 춘계학술대회 논문집 센서 박막 기술교육
    • /
    • pp.55-60
    • /
    • 2006
  • Thermally stable and solution-processable poly(N-arylcarbazole-alt-aniline) copolymers with high structural integrity were synthesized in good yields via palladium-catalyzed polycondensation of aniline with corresponding N-arylcarbazole monomers such as N-(2-ethylhexyloxyphenyl)-3,6-dibromocarbazole,bis[6-bromo-N-(2-ethylhexyloxyphenyl)carbazole-3-yl] and N-(4-(2-ethylhexyl)-3,5-dibromomethylene-phenyl) carbazole, respectively. The optical and electrochemical properties of these copolymers were measured and compared with those of poly(N-alkylcarbazole-alt-aniline) copolymer. All synthesized poly(N-arylcarbazole-alt-aniline) copolymers showed maximum UV-Vis absorption peaks at around 300 nm in THF solution, and exhibited maximum photoluminescence peaks in the blue emission range from 430 to 460 nm. It was also found that poly(N-arylcarbazole-alt-aniline) copolymers had wider band gap energy than poly(N-alkylcarbazole-alt-aniline) copolymer.

  • PDF