• Title/Summary/Keyword: Blue light-emitting

Search Result 641, Processing Time 0.031 seconds

Optical Properties of blue emitting (Ca, Sr)$Mg_2Si_3O_9:Eu^{2+}$ phosphor

  • Lee, Hyun-Ju;Pil, Kyung;Yoo, Jae-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1276-1278
    • /
    • 2009
  • A novel blue emitting $Ca_{1-x}Mg_2Si_3O_9:Eu_x$ phosphor was synthesized by the solid state reaction and its photoluminescence properties were optimized by controlling concentration of the activator contents and substituting concentration of Ca ion by Sr ion. The photoluminescence (PL) showed that this phosphor is efficiently excited by ultraviolet (UV)-visible light in the wavelength range from 200 to 410 nm. Also this phosphor emits intensely blue light with a broad peak at around 450 nm.

  • PDF

Adaptation of light emitting diode (LED) at culture on attachment plate of diatom (부착조류 파판배양 시 Light Emitting Diodes (LEDs)의 적용)

  • Bae, Jae-Hyun;An, Heui-Chun;Kim, Mi-Gyeong;Park, Jin-Chul;Park, Heum-Gi;Kwon, O-Nam
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.4
    • /
    • pp.542-550
    • /
    • 2014
  • We investigated biomass, diatom species and fucoxanthin contents as cell growth, fatty acid and amino acid contents as nutritional composition of diatoms attached on plate to confirm effects of light emitting diodes (LEDs) due to block off natural light. In the single LED irradiation, biomass showed significantly higher to $30.0{\pm}6.48mg/m^2$ in white LED than that of others (P<0.05). The dominate diatom species was Navicula cancellata. Their lipid contents showed significantly higher to $112.9{\pm}19.23ug/mg$ dry matter (DM) in control than that of others LEDs. But eicosapetaenoic acid (EPA) contents showed significantly higher to $3.3{\pm}0.62ug/mg$ DM than others, but not significantly differed with natural control light treatment (P<0.05). And total protein contents are higher in control and blue LED light than that of others, but essential amino acid contents showed significantly higher to $3.2{\pm}4.8%$ in control (P<0.05). In mixing light with natural and LED light, biomass showed $2.6{\pm}0.22mg/m^2$ in blue LED (P<0.05). Fatty acids contents were not significantly differed with all treatments. Amino acid contents showed to $11.0{\pm}0.33ug/mg$ DM in white LED (P<0.05), but not significantly differed with others LED lights (P>0.05). Therefore, we could suggest that irradiation of blue LED in natural light very benefit to diatom culture for larvae of sea cucumber and abalone and do on.

Blue Emitting Cationic Iridium Complexes Containing Two Substituted 2-Phenylpyridine and One 2,2'-Biimidazole for Solution-Processed Organic Light-Emitting Diodes (OLEDs)

  • Yun, Seong-Jae;Seo, Hoe-Joo;Song, Myungkwan;Jin, Sung-Ho;Kim, Young Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3645-3650
    • /
    • 2012
  • Two new blue emitting cationic iridium(III) complexes with two substituted 2-phenlypyridine ligands as main ligands and one 2,2'-biimidazole as an ancillary ligand, $[(L1)_2Ir(biim)]Cl$ (1) and $[(L2)_2Ir(biim)]Cl$ (2), where L1 = 2-(2',4'-difluorophenyl)-4-methylpyridine, L2 = 2-(2',4'-difluoro-3'-trifluoromethylphenyl)-4-methylpyridine and biim = 2,2'-biimidazole, were synthesized for applications in phosphorescent organic light-emitting diodes (PhOLEDs). Their photophysical, electrochemical and electroluminescent (EL) device performances were examined. The photoluminescent (PL) spectra revealed blue phosphorescence in the 450 to 485 nm range with a quantum yield of more than 10%. The iridium(III) compounds studied showed good solubility in organic solvents with no solvatochromism dependent on the solvent polarity. The solution-processed OLEDs were prepared with the configuration, ITO/PEDOT:PSS (40 nm)/mCP:Ir(III) (70 nm)/OXD-7 (20 nm)/LiF (1 nm)/Al (100 nm), by spin coating the emitting layer containing the mCP host doped with the iridium phosphors. The best performance of the fabricated OLEDs based on compound 1 showed an external quantum efficiency of 4.5%, luminance efficiency of 8.52 cd $A^{-1}$ and blue emission with the CIE coordinates (x,y) of (0.16, 0.33).

Effect of Light Emitting Diodes Treatment on Growth and Quality of Lettuce (Lactuca sativa L. 'Oak Leaf') (LED 처리가 상추의 생육 및 품질에 미치는 영향)

  • Shin, Yong-Seub;Lee, Mun-Jung;Lee, Eun-Sook;Ahn, Joon-Hyung;Kim, Min-Ki;Lee, Ji-Eun;Do, Han-Woo;Cheung, Joung-Do;Park, Jong-Uk;Um, Young-Ghul;Park, So-Deuk;Chae, Jang-Heui
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.148-153
    • /
    • 2014
  • The objective of this study was to elucidate the effect of light-emitting diode treatment on early growth and inorganic elements in leaf lettuce (Lactuca sativa L. 'Oak Leaf'). In changes to leaf morphology, shoot elongation and hypocotyl length showed poor growth under red light irradiation, while red+blue light irradiation induced shorter plant height and more leaves, resulting in increased fresh weight. With respect to Hunter's color and SPAD values, lettuce seedlings grown under red+ blue and fluorescent light irradiation had a higher $a^*$ value but showed no other changes to SPAD values. Interestingly, redness in relative chlorophyll content was 1.4 times higher under red+blue light irradiation. Inorganic element (N, Ca, Mg, and Fe) and ascorbic acid concentrations increased in lettuce plants grown under LED light irradiation compared to those of lettuce grown under fluorescent light, which showed a higher P content. In conclusion, red+blue light irradiation, which stimulates growth and higher nutrient uptake in leaf lettuce, could be employed in containers equipped with LEDs.

Synthesis and Characterization of Poly[9,10-diphenylanthracene-4$^\prime$, 4$^\prime^\prime$-ylenevinylene-3,6-(N-2-ethylhexyl)carbazole]

  • Kim, Yun Mi;Park, Gi Min;Gwon, Sun Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.975-978
    • /
    • 2001
  • A novel poly[9,10-diphenylanthracene-4',4"-ylenevinylene-3,6-(N-2-ethyl hexyl)carbazole] containing alternate diphenylanthracene and carbazole unit was synthesized by the Wittig reaction. The obtained polymer was soluble in common organic solvents and thermally stable up to 380 $^{\circ}C.$ The polymer gives rise to bright blue fluorescence both in solution and in thin solid films. The light emitted from the device (ITO/polymer/Al) was greenish-blue in color and clearly visible in daylight.

The Optimization of Efficient White Organic Light-Emitting Diodes Using a Blue Fluorescent and a Red Phosphorescent Dopant

  • Seo, Ji-Hoon;Kim, Jun-Ho;Seo, Ji-Hyun;Hyung, Gun-Woo;Park, Jung-Hyun;Lee, Kum-Hee;Yoon, Seung-Soo;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1470-1473
    • /
    • 2007
  • We have demonstrated the optimization of white organic light-emitting diodes with two separated emissive layers using a blue fluorescent and a red phosphorescent dopant. The maximum luminous efficiency of the devices showed 7.93, 9.70, 11.8, and 14.3 cd/A. The $CIE_{xy}$ coordinates also showed (x = 0.33, y = 0.36), (x = 0.33, y = 0.35), (x =0.31, y = 0.35), and (x = 0.29, y = 0.36) at 6V, respectively.

  • PDF

Multi-head Inkjet Patterning System for Manufacturing a Full Color Polymer Light Emitting Device (pLED) (고분자 유기 EL 제조를 위한 멀티헤드형 잉크젯 패터닝 시스템)

  • Oh, Je-Hoon;Kim, Si-Kyoung;Yoon, Hee-Youl;Oh, Se-Il;Kang, Yoo-Myung;Kim, Kwang-Il
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1219-1225
    • /
    • 2003
  • According to the increase of lifetime and efficiency, the interest in the pLED has dramatically increased recently because pLED can be applied to large-size and flexible displays. The core process in the manufacture of pLED is the printing process of red, green and blue light emitting polymers (LEP), and inkjet printing method is one of the promising technology to print red, green and blue LEP on glass substrates. In this work, we developed a multi-head inkjet patterning system with 3 heads for each color. The developed inkjet patterning system is composed of the precise positioning system, head controller circuit, real-time ink drop evaluation system, maintenance system, and stable ink supply system. Finally, we investigated the stability and reliability of the system by printing red, green and blue LEP on the dummy substrate.

  • PDF

White Organic Light Emitting Diodes using Red and Blue Phosphorescent Materials with Blocking Layer

  • Park, Jung-Hyun;Kim, Gu-Young;Lee, Seok-Jae;Seo, Ji-Hyun;Seo, Ji-Hoon;Kim, Young-Kwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.218-221
    • /
    • 2007
  • High-efficiency white organic light-emitting diodes(WOLEDs) were fabricated with two emissive layers and an blocking layer was sandwiched between two phosphorescent dopants, bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III(FIrpic) as the blue emission and a newly synthesized red phosphorescent material guest, bis(5-acetyl-2-phenylpyridinato-N,C2') acetylacetonate($(acppy)_2Ir(acac)$). This blocking layer prevented a T-T annihilation in a red emissive layer, and balanced with blue and red emission as blocking of hole carriers. The white device showed Commission Internationale d'Eclairage($CIE_{x,y}$) coordinates of (0.317, 0.425) at 22400 $cd/m^2$, a maximum luminance of 27300 $cd/m^2$ at 268 $mA/cm^2$, a maximum luminous efficiency and power efficiency of 26.9 cd/A and 18.6 lm/W.

White Organic Light-emitting Diodes using red and blue phosphorescent materials (적색과 청색 인광 소재를 이용한 백색 유기 발광 소자에 관한 연구)

  • Park, Jung-Hyun;Choi, Hak-Bum;Kim, Gu-Young;Lee, Seok-Jae;Seo, Ji-Hyun;Seo, Ji-Hoon;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.64-65
    • /
    • 2007
  • High-efficiency white organic light-emitting diodes (WOLEDs) were fabricated with two emissive layers and exciton blocking layer was sandwiched between two phosphorescent dyes which were, bis(3,5-Difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III (Flrpic) as blue emission and a newly synthesized red phosphorescent material guest, Bis(5-benzoyl-2-phenylpyridinato-C,N)iridium(III) (acetylacetonate) ((Bzppy)2Ir(III)acac). This exciton blocking layer prevents a triple-triple energy transfer between the two phosphorescent emissive layers with balanced emission of blue and red. The white device showed the Commission Internationale d'Eclairage (CIEx,y) coordinates of (0.34, 0.40) at the maximum luminance of $24100\;cd/m^2$ and maximum luminous efficiency of 22.4 cd/A, respectively.

  • PDF

Optimization of the Emission Spectrum of Red Color in Quantum Dot-Organic Light Emitting Diodes

  • Jeong, Byoung-Seong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.214-218
    • /
    • 2021
  • We investigated the optimal stacked structure from the perspective of process architecture (PA) through emission spectrum analysis according to the wavelength of quantum dot (QD)-organic light-emitting diodes (OLED). We confirmed that the blue-light leakage through the QD can be minimized by increasing the QD filling density above a critical value in the red QD (R-QD) layer. In addition, when the thickness of red-color filter (R-CF) at the upper part of the R-QD increased to more than 3 ㎛, the leakage of blue light through the R-CF was effectively blocked, and a very sharp emission spectrum in the red wavelength band could be obtained. According to these outstanding results, we expect that the development of QD-OLED displays with very excellent color gamut can be possibly realized.