• Title/Summary/Keyword: Blue light blocking

Search Result 44, Processing Time 0.026 seconds

Blue light Exposure Control System Using Sensor Modules

  • Lim, Myung-Jae;Jung, Dong-Kun;Kim, Kyu-Dong;Kwon, Young-Man
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.315-319
    • /
    • 2021
  • Recent impact of 4th industrial revolution is increasing usage of IoT technology along with smartphones and tablet PC. However blue light emitted from electronic devices such as smartphones and tablet PC causes detrimental change to human bodies. As the controversy over the harmfulness of blue light became known through the media and various communities, related markets were formed, and various blocking films, software, and vision protection monitors were released. In this paper focuses on utilizing IoT technology to protect human organizations from blue light. It presents anti-blue light system which prevents excessive exposure to blue light through Arduino module such as ultrasound, piezo buzzer and blue light measurement module.

White Organic Light Emitting Diodes using Red and Blue Phosphorescent Materials with Blocking Layer

  • Park, Jung-Hyun;Kim, Gu-Young;Lee, Seok-Jae;Seo, Ji-Hyun;Seo, Ji-Hoon;Kim, Young-Kwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.218-221
    • /
    • 2007
  • High-efficiency white organic light-emitting diodes(WOLEDs) were fabricated with two emissive layers and an blocking layer was sandwiched between two phosphorescent dopants, bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III(FIrpic) as the blue emission and a newly synthesized red phosphorescent material guest, bis(5-acetyl-2-phenylpyridinato-N,C2') acetylacetonate($(acppy)_2Ir(acac)$). This blocking layer prevented a T-T annihilation in a red emissive layer, and balanced with blue and red emission as blocking of hole carriers. The white device showed Commission Internationale d'Eclairage($CIE_{x,y}$) coordinates of (0.317, 0.425) at 22400 $cd/m^2$, a maximum luminance of 27300 $cd/m^2$ at 268 $mA/cm^2$, a maximum luminous efficiency and power efficiency of 26.9 cd/A and 18.6 lm/W.

Improvement of electroluminescent efficiency by using interfacial exciton blocking layer in blue emitting electrophosphorescent organic light emitting diodes

  • Kim, Ji-Whan;Kim, Joo-Hyun;Yoon, Do-Yeung;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1381-1382
    • /
    • 2005
  • We report improved efficiency in blue electrophosphorescent organic light emitting diodes by introducing an interfacial exciton blocking layer between light emitting layer (EML) and hole transport layer (HTL). Iridium(III) bis [(4,6-di-fluorophenyl)- pyridinato -N,C2']picolinate (FIrpic) was used as blue phosphorescent dopant and JHK6-3 with carbazole and electron transporting group as host and also as the interfacial layer, resulting in drastic increase in quantum efficiency.

  • PDF

White Organic Light-emitting Diodes using red and blue phosphorescent materials (적색과 청색 인광 소재를 이용한 백색 유기 발광 소자에 관한 연구)

  • Park, Jung-Hyun;Choi, Hak-Bum;Kim, Gu-Young;Lee, Seok-Jae;Seo, Ji-Hyun;Seo, Ji-Hoon;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.64-65
    • /
    • 2007
  • High-efficiency white organic light-emitting diodes (WOLEDs) were fabricated with two emissive layers and exciton blocking layer was sandwiched between two phosphorescent dyes which were, bis(3,5-Difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III (Flrpic) as blue emission and a newly synthesized red phosphorescent material guest, Bis(5-benzoyl-2-phenylpyridinato-C,N)iridium(III) (acetylacetonate) ((Bzppy)2Ir(III)acac). This exciton blocking layer prevents a triple-triple energy transfer between the two phosphorescent emissive layers with balanced emission of blue and red. The white device showed the Commission Internationale d'Eclairage (CIEx,y) coordinates of (0.34, 0.40) at the maximum luminance of $24100\;cd/m^2$ and maximum luminous efficiency of 22.4 cd/A, respectively.

  • PDF

Study of Lettuce Growth Characteristic on Selective Light Transmitting Filter Film Covered Greenhouse (선택적 광 투과에 따른 상추 생육특성)

  • Kang, D.H.;Hong, S.J.;Lee, J.W.;Kim, D.E.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2020
  • This study aimed to investigate responses of plant growth and photosynthesis to different kinds of covering materials with selective light transmit for red leaf lettuce (Lactuca sativa L.). Experimental pot design was attached UV blocking filter, red filter, blue filter, and green filter. The kinds of covering materials showed significant results for plant growth especially control, UV blocking filter, and red filter. The photosynthetic rate and anthocyanin content of red leaf lettuce were higher in control and UV blocking filter than others. The quality of red leaf lettuce was low in red, green, and blue film treatments because of too low anthocyanin content.

Improving performance of deep-blue OLED by inserting ultra-thin LiF between hole-blocking and electron-transporting layers

  • Sun, J.X.;Zhu, X.L.;Yu, X.M.;Wong, M.;Kwok, H.S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.956-960
    • /
    • 2006
  • Deep-blue organic light-emitting diodes (OLEDs) with/without ultra-thin LiF layer inserted at the interface between hole-blocking and electron-transporting layers have been fabricated and investigated. The fundamental structures of the OLEDs are ITO/m-MTDATA/NPB/BCP/LiF (with/ without)/ $Alq_3/LiF/Al.Deep$ blue light emission with CIE coordinate of (0.15, 0.11) has been achieved for all devices. Further, by inserting LiF with thickness of 1nm at the interface between BCP and $Alq_3$ layer, the luminous efficiency as well as the power efficiency is much improved compared to that without. The enhancement of electron injection due to insertion of LiF may account for this improvement.

  • PDF

A Study on the Fabrication and Characteristic Analysis of Organic Light Emitting Device using BAlq (BAlq를 적용한 유기발광소자의 제작 및 특성 분석에 관한 연구)

  • 오환술;황수웅;강성종
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.83-88
    • /
    • 2004
  • BAlq was fabricated as for hole blocking layer in the OLED devices to investigate its electrical and optical characteristics. Device structure was ITO/$\alpha$ -NPD/EML/BAlq/Alq3/Al:Li using TYG-201, DPVBi (4, 4 - Bis (2, 2 - diphenylethen-1 - yls) - Biphenyl), Alq and DCJTB (4-(dicyanomethylene)-2- (1-propyls)6-methy 4H-pyrans) as green emitting material, blue emitting material, host material for red emission and red emitting guest material respectively. The OLED device showed optimum working voltage and electron density at 600 cd/$m^2$ when thickness of BAlq is 25$\AA$ for RGB OLED devices while their efficiencies are better at 50$\AA$ of BAlq. Red and blue color OLEDs also fabricated using 30$\AA$ thickness of BAlq and compared with those without BAlq layer. BAlq was more effective in electrical properties such as working voltage, current density and efficiency of red OLED than blue and green ones. This study describes that 30$\AA$ is optimum thickness of BAlq for best performance of full color OLED devices when using BAlq as a hole blocking material.

Low-Molecular-Weight White Organic-Light-Emitting-Devices using Direct Color Mixing Method

  • Lee, Sung-Soo;Song, Tae-Joon;Ko, Myung-Soo;Cho, Sung-Min
    • Journal of Information Display
    • /
    • v.3 no.2
    • /
    • pp.6-12
    • /
    • 2002
  • In order to achieve white emission from organic light emitting devices (OLEDs), five distinct structures were fabricated and tested. The white emission was obtained using two different color-emitting materials (yellow from rubrene-doped $Alq_3$ and blue from DPVBi) with or without a carrier-blocking layer. For enhancing the red emission, two types of devices with three-color emitting materials were fabricated. The white emission, close to the CIE coordinate of (0.3,0.3), was achieved by using two blocking layers as well that as without a blocking layer. This paper covers the subject of controlling the location of exciton recombination zone. It has been found that there is a trade-off in that the devices with three color emitting layers do not show as much luminescence efficiency compared to those with two color emitting layers, but rather, show distinct red emission in the resultant emission spectra. The highest power efficiency was measured to be 1.15lm/W at 2,000 $cd/m^2$ for a structure with two color-emitting layers.

Improvement of Color Purity Using Hole Blocking Layer in Hybrid White OLED (Hole Blocking Layer 사용에 따른 하이브리드 백색 OLED의 색순도 향상에 관한 연구)

  • Kim, Nam-Kyu;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.837-840
    • /
    • 2014
  • Novel materials of $Zn(HPB)_2$ and Ir-complexes were respectively synthesized as blue or red emitting material. White Organic Light Emitting Diodes (OLED) were fabricated by using $Zn(HPB)_2$ for a blue emitting layer, Ir-complexes for a red emitting layer and $Alq_3$ for a green emitting layer. White OLED was fabricated by using double emitting layers of $Zn(HPB)_2$ and $Alq_3:Ir$-complexes, and hole blocking layer of BCP. We also varied the thickness of BCP. When the thickness of BCP layer was 5 nm, white emission was achieved. We obtained a maximum luminance of $3,500cd/m^2$. The CIE coordinates was (0.375, 0.331). From this study, we could propose that the hybrid structure is efficient in lighting application of white OLED by improvement of color purity.

Study on recombination zone of blue phosphorescent OLED (청색인광 OLED의 재결합 영역에 관한 연구)

  • Kim, Tae-Yong;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.305-306
    • /
    • 2009
  • In this study, we have invastigated the recombination zone in the blue phosphorescent organic light-emitting devices with various partially doped structures. The basic device structure of the blue PHOLED was anode / hole injection layer (HIL) / hole transport layer (HTL) / emittingvastigated the recombination zone in the blue layer (EML) / hole blocking layer (HBL) / electron transport layer (ETL) / electron injection layer (EIL) / cathode. After the preparation of the blue PHOLED, the current density (J) - voltage (V) - luminance (L) and current efficiency characteristics were measured.

  • PDF