• Title/Summary/Keyword: Blue chip

Search Result 101, Processing Time 0.023 seconds

DEVELOPMENT OF CCD IMAGING SYSTEM USING THERMOELECTRIC COOLING METHOD (열전 냉각방식을 이용한 극미광 영상장비 개발)

  • Park, Young-Sik;Lee, Chung-Woo;Jin, Ho;Han, Won-Yong;Nam, Uk-Won;Lee, Yong-Sam
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.53-66
    • /
    • 2000
  • We developed low light CCD imaging system using thermoelectric cooling method collaboration with a company to design a commercial model. It consists of Kodak KAF-0401E(768$\times$512 pixels) CCD chip, thermoelectric module manufactured by Thermotek. This TEC system can reach an operative temperature of $-25^{\circ}C$. We employed an Uniblitz VS25s shutter and it has capability a minimum exposure time 80ms. The system components are an interface card using a Korea Astronomy Observatory (hereafter KAO) ISA bus controller, image acquisition with AD9816 chip, that is 12bit video processor. The performance test with this imaging system showed good operation within the initial specification of our design. It shows a dark current less than 0.4e-/pixel/sec at a temperature of $-10^{\circ}C$, a linearity 99.9$\pm$0.1%, gain 4.24e-/adu, and system noise is 25.3e-(rms). For low temperature CCD operation, we designed a TEC, which uses a one-stage peltier module and forced air heat exchanger. This TEC imaging system enables accurate photometry($\pm$0.01mag) even though the CCD is not at 'conventional' cryogenic temperatures(140k). The system can be a useful instrument for any other imaging applications. Finally, with this system, we obtained several images of astronomical objects for system performance tests.

  • PDF

Synthesis and Luminescent Characteristics of Sr2Ga2S5:Eu2+ Yellow Phosphor for LEDs (LED용 Sr2Ga2S5:Eu2+ 황색 형광체의 합성 및 발광특성)

  • Kim, Jae-Myeong;Park, Jeong-Gyu;Kim, Gyeong-Nam;Lee, Seung-Jae;Kim, Chang-Hae;Jang, Ho-Gyeom
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.237-242
    • /
    • 2006
  • Nowadays, LEDs has been applied to the luminescent devices of various fields because of the invention of high efficient blue chip. Recently, especially, the white LEDs composed of InGaN blue chips and a yellow phosphor (YAG:Ce3+) have been investigated extensively. With the exception of YAG:Ce3+ phosphor, however, there are no reports on yellow phosphor that has significant emission in the 450~470 nm excitation range and this LED system is the rather low color rendering index due to their using two wavelength. Hence, we have attempted to synthesize thiogallate phosphors that efficiently under the long wavelength excitation range in the present case. Among those phosphors, we have synthesized Sr2Ga2S5:Eu2+ phosphor by change the host material of SrGa2S4:Eu2+ which is well known phosphor and we investigated the luminescent properties. In order to obtain the harmlessness and simplification of the synthesis process, sulfide materials and mixture gas of 5 % H2/95 % N2 were used instead of the CS2 or H2S gas. The prepared phosphor shows the yellow color peaking at the 550 nm wavelength and it possible to emit efficiently under the broad excitation band in the range of 300~500 nm. And this phosphor shows high luminescent intensity more than 110 % in comparison with commercial YAG:Ce3+ phosphor and it can be applied for UV LED due to excitation property in UV region.

The Transmission of Tele-Information System using BlueTooth (블루투스를 이용한 웹으로의 원격 의료정보 전송 시스템)

  • 채희영;강형원;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.130-133
    • /
    • 2002
  • As a society advances, an aging phenomenon and many diseases which did not exist in old times are happening. Especially, in case of the aged patient, because we cant know the time the condition of the patients health become worse, the study of the Tele-information system has been actively carried out by the necessity of a persistent observation. A ECG signal a kind of a vital signals has been widely used to the medical information system as an usual clinical diagnosis for the patients who possess heart diseases. BlueTooth is a close range wireless communication technology which uses a wireless frequency 2.4GHz and has a high trust and self - error correction technology according to a low power consumption quality and a high-speed frequency hopping. This makes get a high trust concerning a data transmission than an existing modem. In addition, though wireless modem is restricted by a minimal of a wireless terminal, It will be possible to coincide with the function of the portable with the low power consumption quality by using Bluetooth. And as the system on a chip of module progresses, the possibility of the small size is present According to this, Bluetooth module transmits the medical information, which is input from the outside among the operations that use the Bluetooth to the Bluetooth module that is connected the host PC. And the system that the host PC transmits the medical information from the connected Bluetooth module to the Internet has once embedded. this study let the host PC embedded in advance of the existing system and transmit the medical information by the addition of the Tcp/Ip protocol stark under all embedded environments to internet.

  • PDF

Development of Red CaAlSiN3:Eu2+ Phosphor in Glass Ceramic Composite for Automobile LED with High Temperature Stability (고온 안정성이 우수한 자동차 LED용 Red CaAlSiN3:Eu2+ 형광체/Glass 세라믹 복합체 개발)

  • Yoon, Chang-Bun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.324-329
    • /
    • 2018
  • Red phosphor in glasses (PiGs) for automotive light-emitting diode (LED) applications were fabricated with 620-nm $CaAlSiN_3:Eu^{2+}$ phosphor and Pb-free silicate glass. PiGs were synthesized and mounted on high-power blue LED to make a monochromatic red LED. PiGs were simple mixtures of red phosphor and transparent glass powder. After being fabricated with uniaxial press and CIP at 300 MPa for 20 min, the green bodies were thermally treated at $550^{\circ}C$ for 30 min to produce high dense PiGs. As the phosphor content increased, the density of the sintered body decreased and PiGs containing 30% phosphor had a full sintered density. Changes in photoluminescence spectra and color coordination were studied by varying the thickness of plates that were mounted after optical polishing. As a result of the optical spectrum and color coordinates, PiG plate with $210{\mu}m$ thickness showed a color purity of 99.7%. In order to evaluate the thermal stability, the thermal quenching characteristics were measured at temperatures of $30{\sim}150^{\circ}C$. The results showed that the red PIG plates were 30% more thermally stable compared to the AlGaInP red chip.

Effect of Lu3Al5O12:Ce3+ and (Sr,Ca)AlSiN3:Eu2+ Phosphor Content on Glass Conversion Lens for High-Power White LED

  • Lee, Hyo-Sung;Hwang, Jong Hee;Lim, Tae-Young;Kim, Jin-Ho;Jeon, Dae-Woo;Jung, Hyun-Suk;Lee, Mi Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.229-233
    • /
    • 2015
  • Currently, the majority of commercial white LEDs are phosphor converted LEDs made of a blue-emitting chip and YAG yellow phosphor dispersed in organic silicone. However, silicone in high-power devices results in long-term performance problems such as reacting with water, color transition, and shrinkage by heat. Additionally, yellow phosphor is not applicable to warm white LEDs that require a low CCT and high CRI. To solve these problems, mixing of green phosphor, red phosphor and glass, which are stable in high temperatures, is common a production method for high-power warm white LEDs. In this study, we fabricated conversion lenses with LUAG green phosphor, SCASN red phosphor and low-softening point glass for high-power warm white LEDs. Conversion lenses can be well controlled through the phosphor content and heat treatment temperature. Therefore, when the green phosphor content was increased, the CRI and luminance efficiency gradually intensified. Moreover, using high heat treatment temperatures, the fabricated conversion lenses had a high CRI and low luminance efficiency. Thus, the fabricated conversion lenses with green and red phosphor below 90 wt% and 10 wt% with a sintering temperature of $500^{\circ}C$ had the best optical properties. The measured values for the CCT, CRI and luminance efficiency were 3200 K, 80, and 85 lm/w.

An empirical study on the major factors of implementing six sigma successfully through black belts (블랙벨트를 통해 본 6시그마 성공의 핵심 요인에 관한 실증적 연구)

  • 신동설;안영진
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.4
    • /
    • pp.81-94
    • /
    • 2003
  • Six sigma is a management innovation strategy which improves all managerial processes in an integrated manner, Six sigma can be applied to every aspect of managerial functions such as marketing, engineering, purchasing, accounting, and so on. Six sigma is trying to solve quality problems from the customer's viewpoint in the scientific manner, thus maximizing profits through the elimination of quality costs. This paper is presented to verify empirically the successful factors of implementing six sigma through the survey of black­belts of Korean firms. The blue­chip companies in Korea and across the world have already adopted Six Sigma, and it is becoming an integral part of the corporate culture of these companies. In conclusion, the most important factors to the success of six sigma are found to be the leadership of top management, and the compensation/ incentive system. The analysis also shows that the important factors are different in terms of both the process type and implementing stage.

Synthesis of K2TiF6:Mn4+ Red Phosphors by a Simple Method and Their Photoluminescence Properties (Mn4+ 이온 활성 K2TiF6 불화물 적색형광체의 합성과 발광특성)

  • Kim, Yeon;Wu, Mihye;Choi, Sungho;Shim, Kwang Bo;Jung, Ha-Kyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.504-511
    • /
    • 2016
  • To prepare $Mn^{4+}$-activated $K_2TiF_6$ phosphor, a precipitation method without using hydrofluoric acid (HF) was designed. In the synthetic reaction, to prevent the decomposition of $K_2MnF_6$, which is used as a source of $Mn^{4+}$ activator, $NH_5F_2$ solution was adopted in place of the HF solution. Single phase $K_2TiF_6$:$Mn^{4+}$ phosphors were successfully synthesized through the designed reaction at room temperature. To acquire high luminance of the phosphor, the reaction conditions such as the type and concentration of the reactants were optimized. Also, the optimum content of $Mn^{4+}$ activator was evaluator based on the emission intensity. Photoluminescence properties such as excitation and emission spectrum, decay curve, and temperature dependence of PL intensity were investigated. In order to examine the applicability of this material to a white LED, the electroluminescence property of a pc-WLED fabricated by combining the $K_2TiF_6$:$Mn^{4+}$ phosphor with a 450 nm blue-LED chip was measured.

Implementation of Telemetry System using Scatternet in Bluetooth Technology (블루투스의 스캐터넷과 임베디드 시스템을 이용한 텔레메트리 시스템의 구현)

  • 김종현;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.941-944
    • /
    • 2003
  • This paper implement Telemetry System which is used Bluetooth. This System propose system which can detect a total amount of gas, electricity or water without a motorman, at home. BlueTooth is a close range wireless communication technology which uses a wireless frequency 2.4GHz and has a high trust and self - error correction technology according to a low power consumption quality and a high-speed frequency hopping. This makes get a high trust concerning a data transmission than an existing modem. In addition, though wireless modem is restricted by a minimal of a wireless terminal, it will be possible to coincide with the function of the portable with the low power consumption quality by using Bluetooth. And as the system on a chip of module progresses, the possibility of the snail size is present. And, Motorman who use mobility of embedded system can detect detect a total amount of gas, electricity or water outdoor. Embedded system use ARM processor that is low power processor. So it ran use long time efficiently.

  • PDF

Optical Properties as Process Condition of Color Conversion Lens Using Low-softening Point Glass for White LED (백색 LED용 저 연화점 유리를 이용한 색 변환 렌즈의 제조 조건에 따른 광 특성)

  • Chae, Yoo-Jin;Lee, Mi-Jai;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Jin-Ho;Jeong, Hee-Suk;Lee, Young-Sik;Kim, Deug-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.454-459
    • /
    • 2013
  • Recently, remote phosphors have been reported for application to white LEDs to provide enhanced phosphor efficiency compared with conventional phosphor-based white LEDs. In this study, a remote phosphor was produced by coating via screen printing on a glass substrate with different numbers of phosphor coating. The paste consists of phosphor, lowest softening glass frits, and organic binders. The remote phosphor could be well controlled by varying the phosphor content rated paste. After mounting the remote phosphor on top of a blue LED chip, CCT, CRI, and luminance efficiency were measured and values of 5300 K, 62, and 117 lm/W were respectively obtained in the 80 wt% phosphor with 3 coating layers sintered at $800^{\circ}C$.

Optical Properties of Color Conversion Lens for White LED Using B2O3-Bi2O3-ZnO Glass (B2O3-Bi2O3-ZnO계 유리를 이용한 백색 LED용 색변환 렌즈의 광 특성)

  • Chae, Yoo-Jin;Lee, Mi-Jai;Kim, Jin-Ho;Hwang, Jong-Hee;Lim, Tae-Young;Jeong, Hee-Suk;Lee, Young-Sik;Kim, Deuk-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.614-619
    • /
    • 2013
  • Recently, remote phosphor is reported for white LED enhancing of phosphor efficiency compared with conventional phosphor-based W-LED. In this study, Remote phosphor was produced by screen printing coating on glass substrate with phosphor contents rated paste and heat treatment. The paste consists of phosphor, lowest softening glass frit and organic binders. Remote phosphor can be well controlled by varying the phosphor content rated paste. After mounting remote phosphor on top of blue LED chip, CCT, CRI, and luminance efficiency were measured. The measurement results showed that CCT, CRI, and luminance efficiency were 6,645, 68, and 1,16l m/W in phosphor 80 wt.% remote phosphor sintered at $600^{\circ}C$.