• Title/Summary/Keyword: Blue band

Search Result 368, Processing Time 0.025 seconds

Properties of Wide-Gap Material for Blue Phosphorescent Light Emitting Device (청색 인광 유기EL 소자를 위한 wide-gap 재료의 제작 및 특성)

  • Chun, Ji-Yun;Han, Jin-Woo;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.36-36
    • /
    • 2008
  • Organic light-emitting device (OLED) have become very attractive due to their potential application in flat panel displays. One important problem to be solved for practical application of full-color OLED is development of three primary color (Red, Green and Blue) emitting molecule with high luminous operation. Particularly, the development of organic materials for blue electroluminescence (EL) lags significantly behind that for the other two primary colors. For this reason, Flu-Si was synthesized and characterized by means of high-resolution mass spectro metry and elemental analyses. Flu-Si has the more wide optical band gap (Eg = 3.86) than reference material (Cz-Si, Eg = 3.52 eV). We measured the photophysical and electrochemical properties of Flu-Si. The HOMO-LUMO levels were estimated by the oxidation potential and the onset of the UV-Vis absorption spectra. The EL properties were studied by the device fabricated as a blue light emitting material with FIrpic.

  • PDF

Absorption Spectra of a Methylene blue-Tetraphenylborate Ion Pair (Methylene Blue-Tetraphenylborate 이온쌍의 흡수스펙트럼)

  • Hyung-Soo Song;Young Joon Park;Kang-Jin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.355-360
    • /
    • 1984
  • A new absorption spectrum observed from dilute aqueous solutions of methylene blue$(MB^+)$ and tetraphenylborate(TPB$^-$) ions was investigated by spectrophotometry. The species responsible for the spectrum can be a charge-transfer complex formed between the two, univalent, and poorly hydrated ions in order to minimize the disturbance to the water structure. However, as the absorption band of MB$^+$ is split into two bands with exciton splitting of about 2,000 cm$^{-1}$, the formation of double ion-pair, (MB-TPB)$_2$ appears to be more favorable than the charge transfer complex.

  • PDF

Synthesis and Properties of Blue Emitting Polymers Containing Carbazole Groups

  • Kwon, Young-Hwan;Wang, Hui;Kim, Yeon-Bo;Ryu, Jeong-Tak;Chang, Seung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.473-474
    • /
    • 2005
  • Blue-emitting polymers containing carbazole units In main chains were synthesized by palladium catalyzed polycondensation of aniline with dibromo-substituted monomers such as 3,6-dibromocarbazole, N-(2-ethylhexyl)-3,6-dibromocarbazole, and bis[6-bromo-N-(2-ethylhexyl)-carbazole-3-yl], respectively. All synthesized polymers exhibited relatively good solubility in common organic solvents, considerable molecular weights and high resistance to thermal degradation. From UV-Vis absorption and photoluminescence (PL) spectra of these solution-processable polymers, $\lambda_{max,UV}$ were in the range of 290 ~ 340 nm and $\lambda_{max,PL}$ were in the blue emission range of 440 ~ 478 nm, The polymers had HOMO energy (-5.19 ~ -5.64 eV) and wide band gap energy (2,91 - 3.42 eV).

  • PDF

Study of Paprika Growth Characteristic on Covering Selective Light Transmitting Filter in Greenhouse (선택적 광 투과에 따른 파프리카 생육특성 연구)

  • Kang, D.H.;Kim, D.E.;Lee, J.W.;Hong, S.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.1
    • /
    • pp.59-66
    • /
    • 2021
  • This study aimed to a basic research for the development of dye-sensitized solar cells that the wavelength band required for crop growth is passed, and the wavelength band that is not necessary for crop growth can be used for the generation of electricity. The transmissivity according to the illuminance was about 10% higher in the Blue filter and the Green filter than in the Red filter, but the transmissivity according to the PPFD was about 10% higher in the Red filter and the Blue filter than in the Green filter. In addition, the greenhouse attached with 30% infrared blocking filter was predicted to have a lower air temperature than other greenhouses, but it was investigated that there was no significant difference. Therefore, it was investigated that the application of the infrared cut filter would not be appropriate in a greenhouse that controls the temperature by opening a window. As a result of investigating, it was found that the Green and Blue filter greenhouses had the severe overgrowth and the stems grew weaker. The fresh weight of paprika in the infrared blocking filter greenhouse was the highest at 678.9g, and the growth of Red filter and the control greenhouses was relatively poor. Photosynthetic rate, amount of transpiration, and stomatal conductivity were the infrared blocking filter and control greenhouse higher than others. On the other hand, the water use efficiency did not show a big difference.

Optimal Design Method for a Plasmonic Color Filter by Using Individual Phenomenon in a Plasmonic Hybrid Structure (복합 플라즈몬 구조에서의 개별 모드 동작을 이용한 플라즈모닉 컬러 필터 최적의 설계 방법)

  • Lee, Yong Ho;Do, Yun Seon
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.6
    • /
    • pp.275-284
    • /
    • 2018
  • In this study we propose a hybrid color-filter design method in which a nanohole array and a nanodisk array are separated by nanopillars of the material AZ 1500. We propose a design method for an RGB color filter, using the tendency of transmitted light according to each design variable. Especially we analyzed the intensity distribution of the electric field in the cross section, and set the height of the nanopillars so that the local surface-plasmon resonances generated in the two different arrays do not affect each other. The optical characteristics of the optimized color filter are as follows: In the case of the red filter, the ratio of the wavelength band expressing red in the visible broadband is 55.01%, and the maximum transmittance is 41.53%. In the case of the green filter, the ratio of the wavelength band expressing green is 40.20%, and the maximum transmittance is 42.41%. In the case of the blue filter, the ratio of the wavelength band expressing blue is 32.78%, and the maximum transmittance is 30.27%. We expect to improve the characteristics of color filters integrated in industrial devices by this study.

Synthesis and Characteristics of Blue Light Emitting Soluble PPV Copolymer (청색 발광 가용성 PPV 공중합체의 합성 및 특성)

  • 이경민;최병수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.145-151
    • /
    • 2001
  • In this study, blue light emiting, soluble PPV copolymers were synthesized by Witting reaction and characterized. ITO/copolymer/Ca and ITO/copolymer/A1 structured light emitting diodes(LED) were fabricated and their I-V characteristics were examined. Copolymers showed $\pi$-$\pi$ transition in UV-Vis./NIR spectra. The PL and abosorption spectrum showed the symmetric vibration modes with mirror images which means that copolymers are highly aligned. By introducing aliphatic hydrocarbon group on polymer main chain, the solubility of copolymers was improved and no significant effects of substituent were observed. The band offset of copolymers are well suited as light emitting material for LED application than monomer or oligomer does. THe band offset of copolymers is ∼3eV in PL spectrum and the threshold voltages of ITO/copolymer/Ca and ITO/copolymer/Al structured LED 3V, 12V respectively. In the case of ITO/copolymer/Ca LED, it is believed that the amount of electrons and holes is well balanced and the recombination of opposite charges occurs easily because the work functions of Ca and Al electrodes are 2.9 and 4.3eV respectively and the difference in barrier height between polymer and electrode was small.

  • PDF

Reactions of Various Ceramic Materials with Cobalt Sulfate Solution (황산코발트 용액에 의한 다양한 세라믹소지의 반응)

  • Won, Il-An;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.93-97
    • /
    • 2014
  • In this study, a cobalt sulfate ceramic coating was sintered on various clays at $1250^{\circ}C$. The specimen characteristics were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), TG-DTA, UV-vis spectrophotometer, and HRDPM. The ceramic coating had a constant thickness of thousands ${\mu}m$, and the surface was confirmed to be densely fused. Other new compounds were produced by the cobalt sulfate sintering process and reactions. These compounds were a $CoAl_2O_4$ phase, $Co_2SiO_4$ phase, anorthite($CaAl_2Si_2O_8$) phase, and $FeAl_2O_4$ phase, respectively. UV properties of the coated specimen were investigated, celadon clay specimen in 530-550 nm band is showing a dark gray color. The white clay and white mix clay specimen in 460-500 nm band is showing a blue color. The cobalt-aluminate($CoAl_2O_4$) spinel and the cobalt-silicate olivine($Co_2SiO_4$) were the strongest of the ceramic pigments, producing a very pure, navy blue color.

Enhanced photocatalytic performance of magnesium-lithium co-doped BiVO4 and its degradation of methylene blue

  • Nayoung Kim;Hyeonjin Kim;Jiyu Lee ;Seog-Young Yoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.4
    • /
    • pp.132-138
    • /
    • 2023
  • Doped and undoped-BiVO4 samples with different elements (Li, Mg) and amounts were synthesized with a hydrothermal method. The synthesized samples were characterized using various techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis diffusion reflectance spectroscopy (UV-Vis DRS), and photoluminescence (PL) spectroscopy. Photocatalytic activity of the samples was evaluated by measuring the degradation of methyl blue (MB) under visible light irradiation. The results indicated that the incorporation of Mg and Li into BiVO4 caused lattice distortion, the presence of surface hydroxyl groups, a narrower band gap, and a reduced recombination ratio of photo-induced electron-hole pairs. Notably, the photocatalytic activity of Mg5%-Li5% co-doped BiVO4 sample exhibited a significant improvement compared to that of undoped BiVO4 sample.

Detecting colorectal lesions with image-enhanced endoscopy: an updated review from clinical trials

  • Mizuki Nagai;Sho Suzuki;Yohei Minato;Fumiaki Ishibashi;Kentaro Mochida;Ken Ohata;Tetsuo Morishita
    • Clinical Endoscopy
    • /
    • v.56 no.5
    • /
    • pp.553-562
    • /
    • 2023
  • Colonoscopy plays an important role in reducing the incidence and mortality of colorectal cancer by detecting adenomas and other precancerous lesions. Image-enhanced endoscopy (IEE) increases lesion visibility by enhancing the microstructure, blood vessels, and mucosal surface color, resulting in the detection of colorectal lesions. In recent years, various IEE techniques have been used in clinical practice, each with its unique characteristics. Numerous studies have reported the effectiveness of IEE in the detection of colorectal lesions. IEEs can be divided into two broad categories according to the nature of the image: images constructed using narrow-band wavelength light, such as narrow-band imaging and blue laser imaging/blue light imaging, or color images based on white light, such as linked color imaging, texture and color enhancement imaging, and i-scan. Conversely, artificial intelligence (AI) systems, such as computer-aided diagnosis systems, have recently been developed to assist endoscopists in detecting colorectal lesions during colonoscopy. To gain a better understanding of the features of each IEE, this review presents the effectiveness of each type of IEE and their combination with AI for colorectal lesion detection by referencing the latest research data.

Application of Remote Sensing Technology considering Water Quality Parameters of Nakdong River basin (하천수질인자를 고려한 원격탐사기술의 적용 ; 낙동강유역을 대상으로)

  • Lim, Ji Sang;Lee, Eul Rae;Kang, Sin Uk;Choi, Hyun Gu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.286-286
    • /
    • 2015
  • 하천과 해양에서 발생한 수질오염은 특성상 유속의 흐름에 따라 광범위하며 급속도로 퍼져나가기 때문에 이를 효율적으로 유지, 관리하기 위해서는 오염인자들에 대한 모니터링이 수행되어야 한다. 원격탐사 기술을 이용한 하천의 수질측정은 대규모지역으로 분포해있는 수질농도의 변화양상을 시 공간적으로 모니터링 하는 것이 가능하게 할 뿐 아니라, 사람이 접근하기 어려운 지역에는 직접취수를 하지 않음으로써 기존의 수질측정방법들에 비해 편의성을 높여 시간적, 경제적 측면에서 효율적이다. 이에 본 연구에서는 최근 수질오염이 심화되고 있는 낙동강유역을 대상으로 인공위성 이미지영상을 이용하여 수질인자들의 농도측정을 수행하였다. 연구를 위해 사용된 인공위성은 NASA와 USGS가 공동으로 운용중인 Landsat 8 인공위성이다. Landsat 8의 11개 band 중 band2(Blue), band3(Green), band4(Red), band5(Near Infrared)를 사용하여 실제로 측정된 지점자료와 인공위성자료간의 상관관계를 규명하였다. 사용된 인공위성자료는 지점자료 날짜를 포함하는 총 4개의 연구날짜(2013/10/27, 2013/11/12, 2014/04/14, 2014/05/16)에 해당하는 위성이미지영상이다. Pearson상관계수를 통한 밴드와 수질인자간의 상관 결과, 본 연구지역에서는 $0.85-0.88{\mu}m$(band5)의 파장영역에서 클로로필-a와 부유물질이 가장 민감하게 반응함을 알 수 있었다. 두 수질인자들은 band2, band3, band4에서도 비교적 높은 상관성을 보였으며, 이를 근거로 band combination, band ratio를 통해 클로로필-a와 부유물질의 회귀모델식을 유도하였다. 각각의 회귀모델식은 실제 측정된 데이터들과 비교 검증을 통해 4개의 연구기간 중 2013년 10월 27일, 2014년 5월 16일에 대해서 클로로필-a와 부유물질의 공간적인 분포양상을 시각적으로 도시화하였다.

  • PDF