• 제목/요약/키워드: Blue OLED

검색결과 167건 처리시간 0.035초

Improved EL efficiency and operational lifetime of top-emitting white OLED with a co-doping technology

  • Lee, Meng-Ting;Tseng, Mei-Rurng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1411-1414
    • /
    • 2007
  • We have developed a top-emitting white organic electroluminescent device (TWOLED) incorporating a low-reflectivity molybdenum (Mo) anode and doped transport layers as well as a dual-layer architecture of doped blue and yellow emitters with the same blue host. The EL efficiency and operational lifetime of TWOLED can be enhanced by a factor of 1.2 and 3.4 than that of standard TWOLED, respectively, with a co-doping technology in yellow emitter by doping another blue dopant. The enhancement in device performances can be attributed to improve the energy transfer efficiency from blue host to yellow dopant through a blue dopant as medium in yellow emitter.

  • PDF

GDI Host-Dopant를 이용한 청색 유기발광다이오드의 제작 (Fabrication of Blue OLED with GDI Host and Dopant)

  • 장지근;신세진;강의정;김희원;서동균;임용규;장호정
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.773-776
    • /
    • 2005
  • In the fabrication of high performance Blue organic light emitting diode, 2-TNATA[4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as hole injection material and NPB[N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as hole transport material were deposited on the ITO (Indium Tin Oxide)/Glass substrate by vacuum evaporation. And then, Blue color emission layer was deposited using GDI602 as a host material and GDI691 as a dopant. Finally, small molecule OLED with the structure of ITO/2-TNATA/NPB/GDI602+GDI691/Alq3/LiF/Al was obtained by in-situ deposition of Alq3, LiF and Al as electron transport material, electron injection material and cathode, respectively. Blue OLED fabricated in our experiments showed the color coordinate of CIE(0.14, 0.16) and the maximum luminescence efficiency of 1.06 lm/W at 11 V with the peak emission wavelength of 464 nm.

  • PDF

새로운 Spiro[fluorene-benzofluore]계 청색 호스트 물질의 유기전계발광 특성 (Electroluminescence Properties of New Spiro(fluorene-benzofluore)-Type Blue Host Materials)

  • 전영민;이현석;이칠원;김준우;장지근;공명선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 춘계학술대회 및 기술 세미나 논문집 디스플레이 광소자
    • /
    • pp.29-30
    • /
    • 2008
  • New spiro-type host materials, 5'-phenylnaphthyl-spiro[fluorene-7,9'-benzofluorene](BH-lPN) and 5',6-bis(phenylnaphthyl)-spiro[fluorene-7,9'-benzofluorene](BH-6PN) were designed and successfully prepared by the Suzki reaction. The EL characteristics of BH-1PN as blue host material doped with blue dopant materials, BD-1 were evaluated and compared with the existing host MADN:dopant BD-1 system. The structure of the device is ITO/DNTPD/NPB/Host:5% dopant/Alq3/Al-LiF. The device obtained from BH-lPN doped with BD-1 showed a good color purity and efficiency, on the other hand luminance and current-density characteristics are worse than that of MADN doped with BD-1.

  • PDF

컬러필터를 이용한 OLED소자의 제작

  • 정동훈;박민;주승기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.471-472
    • /
    • 2006
  • COT-OLED는 컬러필터와 백색 유기 EL층을 형성하는 기술로써 Red, Green, Blue 빛을 내는 유기 EL 층을 Hard Mask를 이용하여 독립적으로 증착하는 기존의 OLED소자와는 달리, 사진 식각에 의하여 컬러필터를 형성한 다음 백색 유기 EL층을 Hard Mask를 사용하지 않고 형성하는 제작 방법이다. 본 실험에서는 제작이 어려운 백색 유기 EL층 대신 녹색 유기 EL층를 증착하여 실험하였다.

  • PDF

청색과 적색 인광 물질을 사용한 백색 적층 OLED의 발광 특성 (Emission Characteristics of White Tandem Organic Light Emitting Diodes Using Blue and Red Phosphorescent Materials)

  • 박찬석;주성후
    • 한국표면공학회지
    • /
    • 제49권2호
    • /
    • pp.196-201
    • /
    • 2016
  • We studied white tandem organic light-emitting diodes using blue and red phosphorescent materials. Optimized white single phosphorescent OLED was fabricated using CBP : FIrpic (12 vol.%, 9 nm) / CBP : $Ir(mphmq)_2acac$ : $Ir(ppy)_3$ (1 vol.%, 1 vol.%, 1 nm) as emitting layer (EML). The single phosphorescent OLED showed maximum current efficiency of 22.5 cd/A, white emission with a Commission Internationale de l'Eclairage (CIE) coordinates of (0.342, 0.37) at $1,000cd/m^2$, and variation of CIE coordinates with ($0.339{\pm}0.008$, $0.371{\pm}0.001$) from 500 to $3,000cd/m^2$. Optimized white tandem phosphorescent OLED was fabricated using CBP : FIrpic (12 vol.%, 7 nm) / CBP : $Ir(mphmq)_2acac$ : $Ir(ppy)_3$ (1 vol.%, 1 vol.%, 3 nm) as EML. The tandem phosphorescent OLED showed maximum current efficiency of 49.2 cd/A, white emission with a CIE coordinates of (0.376, 0.366) at $1,000cd/m^2$, variation of CIE coordinates with ($0.375{\pm}0.004$, $0.367{\pm}0.002$) from 500 to $3,000cd/m^2$. Maximum current efficiency of tandem phosphorescent OLED was more twice as high as single phosphorescent OLED. Our results suggest that tandem phosphorescent OLED was possible to control CIE coordinates and produce excellent color stability.

전하수송층에 따른 청색인광 OLED의 전기적.광학적 특성 (Effect of carrier transporting materials on the optical and electrical characteristics of blue phosphorescent organic light emitting devices)

  • 서유석;문대규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.36-37
    • /
    • 2009
  • We have studied the effect of the hole transporting layers on the device efficiencies blue phosphorescent organic light emitting diodes (PHOLED) with of iridiumIIIbis4,6-di-fluorophenyl-pyridinato-N,C2picolinate (FIrpic) doped 3,5--N,N-dicarbazole-benzene (mCP) host. The highest efficiency of blue PHOLED is strongy dependent on the hole transporting materials, exhibiting the maximum current efficiency.

  • PDF

Co-deposition and Tuned Blue Emission Color from New Tetraphenylethylene Derivatives

  • Kim, Soo-Kang;Park, Jong-Wook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.526-529
    • /
    • 2008
  • By combining tetraphenylethylene and anthracene, we synthesized 9,10-bis(4-(1,2,2-triphenylvinyl)phenyl) anthracene [BTPPA] and 1,2-di(4'-tert-butylphenyl)-1,2-bis(4'-(anthracene-9-yl)phenyl)ethene [BPBAPE]; both BTPPA and BPBAPE have similar band-gaps, however their PL spectra were shifted by about 30 nm with respect to each other. The fabricated multilayered non-doped OLED devices based on pure BTPPA or BPBAPE exhibited luminance efficiencies of 3.93 cd/A at 6.8 V and 10.33 cd/A at 8.1 V, respectively, at $10\;mA/cm^2$. As the BPBAPE content of the emitting layer increased, the luminance efficiency of the device increased; in addition, the CIE coordinates of the fabricated devices shifted gradually from deep-blue for pure BTPPA to sky-blue for pure BPBAPE.

  • PDF

Synthesis and Characterization of Novel Blue Materials based on Anthracene Derivatives for High Efficient OLED

  • Zhao, QingHua;Jung, Sung-Ouk;Kang, Dong-Min;Kim, Yun-Hi;Kwon, Soon-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.439-442
    • /
    • 2007
  • Novel blue materials based on anthracene derivatives were synthesized by Grignard reaction, the Suziki coupling reaction, etc. They showed excellent thermal stability and emitted bright blue light, which will been used for OLED and expected to obtain high efficiency and good color purity.

  • PDF

도핑 비율에 따른 하이브리드 백색 OLED의 효율 향상에 관한 연구 (Improvement of Efficiency Varying Ratio in Hybrid White OLED)

  • 김남규;신훈규;권영수
    • 한국전기전자재료학회논문지
    • /
    • 제27권9호
    • /
    • pp.571-575
    • /
    • 2014
  • We synthesized new materials of $Zn(HPB)_2$ and Ir-complexes as blue or red emitting material. We fabricated white Organic Light Emitting Diodes (OLED) by using $Zn(HPB)_2$ for the blue emitting layer, Ir-complexes for the red emitting layer and $Alq_3$ for the green emitting layer. We fabricated white OLED by using double emitting layers of $Zn(HPB)_2$:Ir-complexes and $Alq_3$. The doping rate of Ir-complexes was varied, such as 0.2%, 0.4%, 0.6%, and 0.8%, respectively. When the doping rate of $Zn(HPB)_2$:Ir-complexes was 0.6%, white emission was achieved. The Commission Internationale de l'Eclairage (CIE) coordinates of the white emission was (0.322, 0.312).

Ultra Wide Band-gap 인광체를 이용한 백색 OLED의 발광 특성 (Emission Characteristics of White Organic Light-Emitting Diodes Using Ultra Wide Band-gap Phosphorescent Material)

  • 천현동;나현석;추동철;강유석;양재웅;주성후
    • 한국전기전자재료학회논문지
    • /
    • 제25권11호
    • /
    • pp.910-915
    • /
    • 2012
  • We studied the emission characteristics of white phosphorescent organic light-emitting diodes (PHOLEDs), which were fabricated using a two-wavelength method. The best blue emitting OLED and red emitting OLED characteristics were obtained at a concentration of 12 vol.% FIrpic and 1 vol.% $Bt_2Ir$(acac) in UGH3, respectively. And the optimum thickness of the total emitting layer was 25 nm. To optimize emission characteristics of white PHOLEDs, white PHOLEDs with red/blue/red, blue/red, red/blue and co-doping emitting layer structures were fabricated using a host-dopant system. In case of white PHOLEDs with co-doping structure, the best efficiency was obtained at a structure UGH3: 12 vol. % FIrpic: 1 vol.% $Bt_2Ir$(acac) (25 nm). The maximum brightness, current efficiency, power efficiency, external quantum efficiency, and CIE (x, y) coordinate were 13,430 $cd/m^2$, 40.5 cd/A, 25.3 lm/W, 17 % and (0.49, 0.47) at 1,000 $cd/m^2$, respectively.