• 제목/요약/키워드: Blue OLED

검색결과 167건 처리시간 0.025초

전자수송층이 청색 인광 OLED의 전기 및 광학적 특성에 미치는 영향 (Effects of Electron Transport Layers on Electrical and Optical Characteristics of Blue Phosphorescent Organic Light Emitting Diodes)

  • 서원규;문대규
    • 한국전기전자재료학회논문지
    • /
    • 제22권4호
    • /
    • pp.323-326
    • /
    • 2009
  • We have developed blue-emitting phosphorescent organic light emitting diodes (OLEDs) using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and tris (8-quinolinolato)aluminum ($Alq_3$) electron transport layers. As blue dopant and host materials, bis[(4,6-di-fluorophenyl)-pyridinate-N,C2']picolinate (FIrpic) and N,N'-dicarbazolyl-3,5-benzene (mCP) were used, respectively. The driving voltage, current efficiency and emission characteristics of devices were investigated. While the driving voltage was about $1{\sim}2$ V lower in the device with an $Alq_3$ layer, the current efficiency was about 66 % higher in the device with BCP electron transport layer. the blue phosphorescent OLED with BCP layer exhibited higher purity of color, resulting from a relatively weak electroluminescence intensity at 500 nm.

7층 적층구조 배면발광 청색 OLED의 발광 특성 연구 (A Study on the Bottom-Emitting Characteristics of Blue OLED with 7-Layer Laminated Structure)

  • 최규철;김덕열;장상목
    • 청정기술
    • /
    • 제29권4호
    • /
    • pp.244-248
    • /
    • 2023
  • 최근 많은 정보를 신속하게 전달하기위한 방법으로 디스플레이의 역할은 아주 중요하며 다양한 색을 자연색에 가깝게 재현하기 위한 연구가 진행 중이다. 특히 정확하고 풍부한 색을 표현하기 위한 방법으로 발광 구조에 대한 연구가 진행되고 있다. 기술의 고도화, 디바이스의 소형화로 인해 작지만 높은 시인성과 에너지 소모에서 높은 효율을 가진 디스플레이의 필요성이 지속적으로 증가되고 있는 실정이다. OLED의 효율을 향상시키기 위해서는 운반자 주입의 향상, 전자와 정공이 수적인 균형을 이루며 효율적으로 재결합 할 수 있는 소자의 구조, 발광 효율이 큰 물질의 개발 등 OLED의 효율을 향상시키고자 하는 노력은 다방면에서 진행되고 있다. 본 연구에서는 7층 적층구조 배면발광 청색 OLED 소자의 전기적 특성 및 광학적 특성을 분석하였다. 소자는 제작이 용이하며, 고효율 및 고휘도화가 가능한 Blue 발광물질인 4,4'-Bis(carbazol-9-yl)biphenyl : Ir(difppy)2(pic)를 사용하였다. OLED 소자 제작은 SUNICEL PLUS 200 시스템을 이용하여 5×10-8 Torr 이하의 고진공 상태에서 In-Situ 방식으로 증착하였다. Electron or Hole Injection Layer(EIL or HIL) Electron or Hole Transport Layer(ETL or HTL) 등이 추가된 5층 구조에 Electron or Hole Blocking Layer(EBL or HBL)을 추가한 7층 구조로 실험을 진행하였다. 제작한 소자의 전기적, 광학적 특성을 분석한 결과 EBL 층과 HBL층을 삽입하여 색의 확산을 방지한 소자는 색 순도가 우수하게 나타났다. 본 연구결과를 이용하여 청색 OLED 디스플레이 소자의 연구 개발 기초 및 실용화에 크게 기여할 것으로 기대된다.

BAlq를 적용한 유기발광소자의 제작 및 특성 분석에 관한 연구 (A Study on the Fabrication and Characteristic Analysis of Organic Light Emitting Device using BAlq)

  • 오환술;황수웅;강성종
    • 한국전기전자재료학회논문지
    • /
    • 제17권1호
    • /
    • pp.83-88
    • /
    • 2004
  • BAlq was fabricated as for hole blocking layer in the OLED devices to investigate its electrical and optical characteristics. Device structure was ITO/$\alpha$ -NPD/EML/BAlq/Alq3/Al:Li using TYG-201, DPVBi (4, 4 - Bis (2, 2 - diphenylethen-1 - yls) - Biphenyl), Alq and DCJTB (4-(dicyanomethylene)-2- (1-propyls)6-methy 4H-pyrans) as green emitting material, blue emitting material, host material for red emission and red emitting guest material respectively. The OLED device showed optimum working voltage and electron density at 600 cd/$m^2$ when thickness of BAlq is 25$\AA$ for RGB OLED devices while their efficiencies are better at 50$\AA$ of BAlq. Red and blue color OLEDs also fabricated using 30$\AA$ thickness of BAlq and compared with those without BAlq layer. BAlq was more effective in electrical properties such as working voltage, current density and efficiency of red OLED than blue and green ones. This study describes that 30$\AA$ is optimum thickness of BAlq for best performance of full color OLED devices when using BAlq as a hole blocking material.

Fully Substituted Ethylene as a New Class of Highly Efficient Blue Emitting Materials for OLEDs

  • Park, Jong-Wook;Kim, Soo-Kang;Park, Young-Il;Kim, Kyoung-Soo;Choi, Cheol-Kyu;Lee, Sang-Do;Kim, Sang-Wook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.363-367
    • /
    • 2006
  • We synthesized new blue and bluish green emitting materials by using fully substituted ethylene moieties. Multi-layered EL devices were fabricated with synthesized materials and evaluated in terms of emission color and luminescence efficiency. BPBAPE[EML 4] having high $T_g$ of $155^{\circ}C$ showed luminance and power efficiency of 10.33cd/A and 4.0 lm/W without any doping agent. BTBPPA[EML 5] exhibited 5cd/A and 1.67lm/W efficiency with blue CIE value of (0.165, 0.195).

  • PDF

Blue OLEDs Utilizing Spiro[fluorene 7,9'-benzofluorene]-type Compounds as Hosts and Dopants

  • Kim, Joo-Han;Jeon, Young-Min;Jang, Ji-Geun;Ryu, Sang-Ouk;Chang, Ho-Jung;Lee, Chil-Won;Kim, Joon-Woo;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권3호
    • /
    • pp.647-652
    • /
    • 2009
  • A novel spiro-type host material, 5-[4-(1-naphthyl)phenyl]-spiro[fluorene-7,9'-benzofluorene] (BH-1PN) and three new dopants, namely, 5-[diphenylamino)phenyl]-spiro[fluorene-7,9'-benzofluorene] (BH-1TPA), 5-[4-(N-phenyl (m-tolyl)amino]-spiro[fluorene-7,9'-benzofluorene] (BH-1MDPA) and 5-[(N-phenyl)-2-naphthyl]amino-spiro[fluorene- 7,9'-benzofluorene] (BH-1NPA) were designed and successfully prepared using the Suzuki or amination reactions. The electroluminescence characteristics of BH-1PN as a blue host material doped with each of the blue dopants were evaluated. The structure of the device is ITO/DNTPD/NPB/BH-1PN:5% dopant/Alq3/Al-LiF. The device obtained from BH-1PN doped with diphenyl-[4-(2-[1,1;4,1]terphenyl-4-yl-vinyl)phenyl]-amine (BD-1) showed good color purity, efficiency, luminance, and current-density characteristics.

Correlation between optimized thicknesses of capping layer and thin metal electrode for efficient top-emitting blue organic light-emitting diodes

  • Hyunsu Cho;Chul Woong Joo;Byoung-Hwa Kwon;Chan-mo Kang;Sukyung Choi;Jin Wook Sin
    • ETRI Journal
    • /
    • 제45권6호
    • /
    • pp.1056-1064
    • /
    • 2023
  • The optical properties of the materials composing organic light-emitting diodes (OLEDs) are considered when designing the optical structure of OLEDs. Optical design is related to the optical properties, such as the efficiency, emission spectra, and color coordinates of OLED devices because of the microcavity effect in top-emitting OLEDs. In this study, the properties of top-emitting blue OLEDs were optimized by adjusting the thicknesses of the thin metal layer and capping layer (CPL). Deep blue emission was achieved in an OLED structure with a second cavity length, even when the transmittance of the thin metal layer was high. The thin metal film thickness ranges applicable to OLEDs with a second microcavity structure are wide. Instead, the thickness of the thin metal layer determines the optimized thickness of the CPL for high efficiency. A thinner metal layer means that higher efficiency can be obtained in OLED devices with a second microcavity structure. In addition, OLEDs with a thinner metal layer showed less color change as a function of the viewing angle.

Preparation of Novel Fused Ring Spiro[benzotetraphene-fluorene] Derivatives and Application for Deep-Blue Host Materials

  • Kim, Min-Ji;Lee, Chil-Won;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1639-1646
    • /
    • 2014
  • A series of novel fused-ring spiro compounds, spiro[benzo[ij]tetraphene-7,9'-fluorene] (SBTF) derivatives containing an end-capping aryl substituent at both the C3 and C10-positions hasbeen designed and synthesized via multi-step Suzuki coupling reactions. 3-(1-Naphthyl)-10-phenylSBTF (1N-PSBTF), 3-(2-naphthyl)-10-phenylSBTF (2N-PSBTF) and 3-[4-(1-naphthyl)phenyl]-10-phenylSBTF (NP-PSBTF) showed improved glass transition temperatures ($T_g$) with good thermal stability. Their photophysical, electrochemical, and electroluminescent properties were investigated and were used to construct blue organic light emission diodes (OLEDs). The typical OLED devices showed excellent performance; the NP-PSBTF-based device exhibited highly efficient deep blue-light emission with a maximum efficiency of 5.27 cd/A (EQE, 4.63%) with CIE (x = 0.133, y = 0.144). According to these characteristics, these deep-blue light emitting materials have sufficient potential for fluorescent OLED applications.

TPM-BiP 청색 형광 재료의 전계발광특성 (Characterization of Blue Organic Light Emitting Diodes using TPM-BiP)

  • 장지근;신상배;안종명;장호정;이학민;공명선;김민영;김준우
    • 반도체디스플레이기술학회지
    • /
    • 제6권2호
    • /
    • pp.11-14
    • /
    • 2007
  • For the fabrication of blue color organic light emitting diodes(OLED) with a high performance, 2-TNATA [4,4',4"-tris (2-naphthylphenyl-phenylamino)-triphenylamine] as hole injection material and NPB [N,N'-bis (1-naphthyl) -N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as hole transport material were deposited on the ITO (indium tin oxide)/glass substrate by the vacuum thermal evaporation. After then, blue color emission layer was deposited using TPM-BiP[(4'-Benzoylferphenyl-4-yl)phenyl-methanone-Diethyl(biphenyl-4-ymethyl)phosphonate] and GDI602 as a light emitting organic material. Finally, the two kinds of OLEDs with the structure of $ITO/2-TNATA/NPB/TPM-BiP/Alq_3/LiF/Al and ITO/2-TNATA/NPB/GDI602/Alq_3/LiF/Al$ were prepared by in-situ deposition. The maximum current density and luminance were found to be about $588\;mA/cm^2\;and\;5239\;cd/m^2$ at 12V for the OLED sample with the structure of $ITO/2-TNATA/NPB/TPM-BiP/Alq_3/LiF/Al$. Color coordinate of blue OLED was x=0.18, y=0.18 (at llV) and the maximum current efficiency was 2.82 cd/A (at 6V) with the peak emission wavelength of 440 nm.

  • PDF

고 효율 2파장 백색 유기 발광 소자의 발광 특성 (Properties of high efficiency 2-${\lambda}$ white organic light emitting diode)

  • 이운규;오용준;고영욱
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.324-325
    • /
    • 2006
  • In order to develop high efficiency white organic light-emitting diodes (OLEDs), OLED devices consisted of red and blue emitting layers (EMLs) were fabricated and the effect of respective layer thickness and the order of layer stacking on the luminous efficiency was evaluated Red/blue structure showed higher efficiency than blue/red, due to the higher exiton formation. In the blue layer of red/blue structure. However, the efficiency of the red/blue significantly depended on the thickness of the red layer, whereas the thickness of the blue layer was not affect so much. The optimum thickness of the red layer was 20 ${\AA}$, where the luminous and power efficiencies were 155 cd/A and 10.51 lm/W at 1000~3000$cd/m^2$ respectively and the maximum luminance was about 80,000 $cd/m^2$.

  • PDF