• Title/Summary/Keyword: Blue LED

Search Result 594, Processing Time 0.028 seconds

Effect of 630 nm Light Emitting Diode (LED) Irradiation on Wound Healing in Streptozotocin-Induced Diabetic Rats

  • JeKal, Seung-Joo;Kwon, Pil-Seung;Kim, Jin-Kyung
    • Biomedical Science Letters
    • /
    • v.16 no.4
    • /
    • pp.365-376
    • /
    • 2010
  • The purpose of this study was to clarify the effect of light emitting diode (LED) irradiation on healing of impaired wound and alteration of mast cells in experimental diabetic rats. Twenty-four male Sprague-Dawley rats were divided into four groups: excision (Ex), excision-LED irradiation (Ex-LED), diabetes + excision (DM) and diabetes + excision + LED irradiation (DM-LED). Diabetes was induced in rats by streptozotocin (STZ) injection (70 mg/kg, single dose) and 6 mm punch excision wounds were created on the back after shaving hair. The LED-irradiated rats were treated to a daily dose of $5\;J/cm^2$ LED (630 nm) light for 11 days after surgery, and were killed at day 1, 3, 7 and 11. The lesion and adjacent skin tissues were excised, fixed with 10% buffered formalin and embedded with paraffin. For evaluation of wound healing, hematoxylin-eosin (HE) and Masson trichrome staining were performed. Mast cells (MCs) were stained with toluidine blue (pH 0.5) and quantified using a computerized image analysis system. The proliferation activity of keratinocyte in skin tissues was analyzed on sections immunostained with proliferative cell nuclear antigen (PCNA). The results showed that wound healing rate, collagen density and neo-epidermis length, number of PCNA-positive cells, fibroblasts and mast cells were significantly higher in the LED-irradiated rats than in the DM and Ex rats throughout the periods of experiment. Exceptionally, the number of MCs was significantly lower at day 11 compared with day 7 after surgery in the all groups. These findings suggest that the LED irradiation may promote the tissue repair process by accelerating keratinocyte and fibroblast proliferation and collagen production in normal rats as well as in diabetic rats, and MCs may play an important role at an early stage of skin wound healing in normal and diabetic rats.

수직형 LED의 광 추출효율 향상을 위한 표면 roughening에 대한 연구

  • Kim, Tae-Hyeong;Bae, Jeong-Un;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.323-324
    • /
    • 2011
  • 현재 많은 blue LED소자의 제작 공정과 소자 표면에 texturing하는 과정이 보고되어 있다. 그 중n층이 위로 올라오는 수직형 LED 구조로 인해 표면 texturing 기술은 빛의 발광 효율을 증가 시킬 수 있는 중요한 기술 중 하나가 되었다. 1 이 연구에서, 우리는 InGaN을 바탕으로 한 LED 소자의 표면 roughening을 건식과 습식 공정을 모두 거치는 과정을 통하여 소자의 발광 효율을 높이는 시도를 하였다. 최근 전도성 물질 기판 위에 증착 되어 있는 수직형 LED 소자 2,3,4는 과거의 사파이어 기판 위에 증착 되어 있는 형태의 LED 소자에 비해 우수한 소자 특성을 보인다. 이는 과거 사파이어 기판을 사용함으로써 낮은 열적 특성과 더불어 전기 정도성에 몇 가지 제약을 초래하게 되었기 때문이다. 반면, 전도성 기판은 LED 구조의 back side ohmic contact을 가능하게 하였고, 더 나은 확산 특성을 보여 주었고 작동 전압 또한 감소 하였다. N층이 위에 있는 수직형 LED 소자는 KrF pulsed excimer laser로 인해 실현 되었다. 이 laser 빛이 투명한 사파이어 기판을 통해 얇은 GaN층에 입사되면, 기판과 GaN가 분리된다. 이 레이저 기술은 laser lift-off(LLO)로 성장된 기판으로부터 LED 구조를 분리하는데 성공하게 하였다. 우리는 건식 식각 공정을 이용하여 n 층이 위에 올라와 있는 구조인 수직형 LED 소자에 roughening을 주고 다시 이 표면에 습식 식각 공정을 적용하여 거친 부분의 거칠기를 또 한번 증가시켰다. 그리고 이 거칠어진 표면은 이 공정이 진행 되기 전의 소자에 비해 빛의 발광 효율이 증가 되었다. 이 두 공정을 포함한 식각 공정은 두 가지 장점이 생겼는데, 한가지는 GaN에서 외부로 방출할 수 있는 표면 지역이 증가되었고, 다른 한가지는 가파른 거칠기 특성으로 인해 critical angle을 증가시킨 것이다.

  • PDF

Study on Scalable Video Coding Signals Transmission Scheme using LED-ID System (LED-ID 시스템을 이용한 SVC 신호의 전송 기법에 관한 연구)

  • Lee, Kyu-Jin;Cha, Dong-Ho;Hwang, Sun-Ha;Lee, Kye-San
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1258-1267
    • /
    • 2011
  • In this paper, using the indoor LED-ID communication system have researched for how to transmit video signals. In LED-ID communications use the LEDs for lighting features at the same time communication is an effective way to implement. This proposed system using Visible light(RGB) as way to transmit signals, depends on the mixture RGB, which decided the color of light, moreover, each things determined their performance. However, if the video signal were fixed allocated RGB to transmit such as the original system, the importance of the each signals a different occur the limit on the quality of the video than SVC signals. In order to solve this problem in this paper, according to the RGB mixture ratios analyze the performance for the White LED, which analyzed based on allocating the SVC signal by transmitting to improve the quality of the video was about how researched.

UV pumped two color phosphor blend White emitting LEDs

  • Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Kyung-Nam;Kim, Chang-Hae;Kim, Ho-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.636-639
    • /
    • 2004
  • We have synthesized a $Eu^{2{\cdot}}$ -activated $Sr_3MgSi_2O_8$ blue phosphor and $Ba^{2{\cdot}}$ co-doped $Sr_2SiO_4$ yellow phosphor investigated an attempt to develop white LEDs by combining it with a GaN blue LED chip. Three distinct emission bands from the GaN-based LED and the ($Sr_3MgSi_2O_8$:Eu + $Ba^{2{\cdot}}$ co-doped $Sr_2SiO_4$:Eu) phosphor are clearly observed at 405nm, 455 nm and at around 540 nm, respectively. These three emission bands combine to give a spectrum that appears white to the naked eye. Our results show that GaN (405 nm chip)-based ($Sr_3MgSi_2O_8$:Eu + $Ba^{2{\cdot}}$ co-doped $Sr_2SiO_4$:Eu) exhibits a better luminous efficiency than that of the industrially available product InGaN (460 nm chip)-based YAG:Ce.

  • PDF

Spectral Distribution and Spectral Absorption of Suspended particulates in Waters of Sanya Bay

  • Yang, Dingtian;Cao, Wenxi
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.495-498
    • /
    • 2006
  • Optical profile and spectral absorption of suspended solids in waters of Sanya bay was measured on August 8-14, 2003. Optical profile was taken by using MicroPro optical profile. Apparent optical indexes, vertical diffuse attenuation coefficient ($K_d$) and water leaving radiance (Lw), were calculated. $K_d$ at the blue end of the spectrum was greater than that at the red end of the spectrum in waters near Sanya River mouth, however, in waters near open sea, $K_d$ at the blue end of the spectrum was smaller than that at the red end of the spectrum. Distribution of water leaving radiance was relatively higher in waters near Sanya River mouth, but relatively weaker in near open sea water. Spectral absorption of suspended particulates was also measured. Results showed that the spectral absorption of chlorophyll a was greater in waters near Sanya river mouth, but relatively weaker in waters near open sea, which indicated higher concentration of phytoplankton in waters near Sanya river mouth. Except for water at the 5th sampling station, the ratio of spectral absorption of chlorophyll a to total suspended particulates in surface waters was greater than that in bottom waters at all stations.

  • PDF

UV pumped three color phosphor blend White emitting LEDs

  • Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Kyung-Nam;Kim, Chang-Hae;Kim, Ho-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1338-1342
    • /
    • 2005
  • We have synthesized an $Eu^{2+}$-activated $Sr_3MgSi_2O_8$ blue phosphor and $Ba_2SiO_4$ green phosphor and $Ba^{2+}$ co-doped $Sr_3SiO_5$ red phosphor investigated an attempt to develop white LEDs by combining it with a GaN blue LED $chip(\lambda_{em}=405 nm)$. Three distinct emission bands from the GaN-based LED and the $(Sr_3MgSi_2O_8:Eu\; +\; Ba_2SiO_4:Eu\; +\; Ba^{2+}\; co-doped\; Sr_3SiO_5:Eu)$ phosphor are clearly observed at 460nm, 520 nm and at around 600 nm, respectively. These three emission bands combine to give a spectrum that appears white to the naked eye. Our results show that GaN (405 nm chip)-based $(Sr_3MgSi_2O_8:Eu\; +\; Ba_2SiO_4:Eu\; +\; Ba^{2+}\; co-doped\; Sr_3SiO_5:Eu) exhibits a better luminous efficiency than that of the industrially available product InGaN (460 nm chip)-based YAG:Ce.

  • PDF

Advances in blue and white Light Emitting Diode using AlInGaN mesa structure and Display Module

  • Park, Book-Sung;Kim, Sung-Woon;Jung, In-Sung;Lee, Seon-Gu;Son, Sung-Il;Lee, Jee-Myun;Kim, Eun-Tae;Kim, Chul-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.347-348
    • /
    • 2008
  • The main goal of this work is advances in 1.0mm $\times$ 0.5mm light emitting diode using AlInGaN cell structure and display module. In the first place, we proposed $200{\mu}m{\times}200{\mu}m$ cell structure using AlInGaN. Secondly, we describe new type 1.0mm $\times$ 0.5mm blue and white LED fabrication procedure and results of an examination include mobile application.

  • PDF

ZnO films grown on GaN/sapphire substrates by pulsed laser deposition

  • Suh, Joo-Young;Song, Hoo-Young;Shin, Myoung-Jun;Park, Young-Jin;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.207-207
    • /
    • 2010
  • Both ZnO and GaN have excellent physical properties in optoelectronic devices such as blue light emitting diode (LED), blue laser diode (LD), and ultra-violet (UV) detector. The ZnO/GaN heterostructure, which has a potential to achieve the cost efficient LED technology, has been fabricated by using radio frequency (RF) sputtering, pyrolysis, metal organic chemical vapor deposition (MOCVD), direct current (DC) arc plasmatron, and pulsed laser deposition (PLD) methods. Among them, the PLD system has a benefit to control the composition ratio of the grown film from the mixture target. A 500-nm-thick ZnO film was grown by PLD technique on c-plane GaN/sapphire substrates. The post annealing process was executed at some varied temperature between from $300^{\circ}C$ to $900^{\circ}C$. The morphology and crystal structural properties obtained by using atomic force microscope (AFM) and x-ray diffraction (XRD) showed that the crystal quality of ZnO thin films can be improved as increasing the annealing temperature. We will discuss the post-treatment effect on film quality (uniformity and reliability) of ZnO/GaN heterostructures.

  • PDF

Changes of Behavioral and Physiological Responses Caused by Color Temperature

  • Lee, Young-Chang;Min, Yoon-Ki;Min, Byung-Chan;Kim, Boseong
    • Science of Emotion and Sensibility
    • /
    • v.18 no.2
    • /
    • pp.37-44
    • /
    • 2015
  • LED lighting has an advantage of adjusting color temperature. This change of color temperature may derive change in behavioral and physiological responses of the visual perception for indoor environments. This research examined the changes of behavioral and physiological responses caused by the color temperature. The environment was configured that the indoor temperature was 20 degrees centigrade or less as the perceived uncomfortable environment in winter. Then, the comfortable sensation vote (CSV) and the results of 3-back working memory test were measured as behavioral responses. In addition, the Electrodermal Activity (EDA) and Electrocardiogram (ECG) were measured as the responses of autonomics nervous system (ANS) in the three conditions of color temperature (red: 3862K, white: 5052K, blue: 11,460K). As a result, behavioral responses were not significant by the condition of color temperature, but the tendency of occupants' physiological relaxation appeared in the blue color temperature condition compared with the white color temperature condition. Although the color temperature of LED lighting might be a small factor in terms of the characteristics of indoor environment, it suggests that the color temperature could have an impact on the physiological changes in the parasympathetic nervous system.

LED Light Quality Protects Iron Deficiency and Improves Photosynthesis and Biomass Yield in Alfalfa (Medicago sativa L.)

  • Ki-Won Lee;Sang-Hoon Lee;Yowook Song;Yowook Song;Jae Hoon Woo;Bo Ram Choi;Md Atikur Rahman
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.3
    • /
    • pp.177-182
    • /
    • 2023
  • Iron (Fe) is a vital element for plants and other organisms, involving in several physiological processes including respiration, chlorophyll biosynthesis, and photosynthesis. Unfortunately, how Fe accumulation regulates in response to light quality has not been well established in plants. Therefore, the aim of the study was to explore the mechanism of Fe homeostasis by light quality. In this study, we found morpho-physiological attributes were significantly improved in response to blue (λmax: 450) compared to white (λmax: 500) and red (λmax: 660) light. The root-shoot length, plant biomass, photosynthesis efficiency (Fv/Fm) and leafgreen (SPAD) significantly declined in response to white and red light. However, these parameters were improved and iron deficiency was substantially alleviated by blue light exposure in alfalfa seedlings. This study might be useful to the forage breeders and farmers for improving alfalfa yield and nutritional benefits.