• Title/Summary/Keyword: Blowing

Search Result 568, Processing Time 0.026 seconds

A study on the Characteristics of the Blowing type Rotary Burner (송풍형 로터리 버너의 특성 연구)

  • Choi Y. H.;Kim K. H.;Yoon S. J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.303-306
    • /
    • 2002
  • Liquid atomization by means of a spinning cup is widely used as a device for combustion, in cooling and spray drying. In this study, the blowing type rotary atomizer was experimental carried out the investigations on the characteristics of the blowing type rotary atomizer which is an air flow energy of blower instead of an electric motor most commonly used to a driven energy. The analysis on the rotary cup speed, air velocity with the blower conditions was performed and also the drop size was measured using LDPA. It was tried to analyzed on air-nozzle size and liquid flowrate as the result. It was found that the increase of the relative velocity between liquid and air improve significantly atomization liquid, and decrease of the liquid flowrate improved the maximum drop size though the mean drop size is really the same.

  • PDF

Effect of variable viscosity on combined forced and free convection boundary-layer flow over a horizontal plate with blowing or suction

  • Mahmoud, Mostafa A.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2007
  • The effects of variable viscosity, blowing or suction on mixed convection flow of a viscous incompressible fluid past a semi-infinite horizontal flat plate aligned parallel to a uniform free stream in the presence of the wall temperature distribution inversely proportional to the square root of the distance from the leading edge have been investigated. The equations governing the flow are transformed into a system of coupled non-linear ordinary differential equations by using similarity variables. The similarity equations have been solved numerically. The effect of the viscosity temperature parameter, the buoyancy parameter and the blowing or suction parameter on the velocity and temperature profiles as well as on the skin-friction coefficient and the Nusselt number are discussed.

  • PDF

Design and Implementation of Fuzzy Logic Controller for Wing Rock

  • Anavatti, Sreenatha G.;Choi, Jin Young;Wong, Pupin P.
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.494-500
    • /
    • 2004
  • The wing rock phenomenon is a high angle of attack aerodynamic motion manifested by limit cycle roll oscillations. Experimental studies reveal that direct control and manipulation of leading edge vortices, through the use of 'blowing' techniques is effective in the suppression of wing rock. This paper presents the design of a robust controller for the experimental implementation of one such 'blowing' technique - recessed angle spanwise blowing (RASB), to achieve wing rock suppression over a range of operating conditions. The robust controller employs Takagi - Sugeno fuzzy system, which is fine-tuned by experimental simulations. Performance of the controller is assessed by real-time wind tunnel experiments with an 80 degree swept back delta wing. Robustness is demonstrated by the suppression of wing rock at a range of angles of attack and free stream velocities. Numerical simulation results are used to further substantiate the experimental findings.

Flow Interaction of Shedding Vortex with Injected Normal Blowing

  • Mon, Khin-Oo;Lee, Chang-Jin;Koo, Hee-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.239-243
    • /
    • 2012
  • This paper is concerned with turbulent flow computations using Large Eddy Simulation (LES) and the flow interaction of vortex shedding in a cylindrical duct flow driven by mass blowing through the wall. The purpose is to analyze non-linear combustion characteristics in the presence of vortex shedding generated in a hybrid rocket motor. Experimental studies have shown sudden changes in pressure (referred as a DC-shift), which depend on the strength of vortex strength of incoming flow. The combustion instability because of a sudden change in pressure fluctuations is mainly related with the interaction between vortex shedding. Therefore LES computation on a duct with injected normal blowing was performed to simulate the turbulent flow interactions with the behaviors of vortices and vortex structures along the injected wall.

  • PDF

Measurement of the Film Cooling Effectiveness on a Flat Plate using Pressure Sensitive Paint

  • Park, S.D.;Lee, K.S.;Kwak, J.S.;Cha, B.J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.53-58
    • /
    • 2008
  • Film cooling effectiveness on a flat plate was measured with pressure sensitive paint. The pressure sensitive paint(PSP) changes the intensity of its emissive light with pressure and the characteristic was used in film cooling effectiveness measurement. The film coolants were air and nitrogen, and by comparing the intensity of PSP coated surface with each coolant, the film cooling effectiveness was calculated. Three blowing ratio of 0.5, 1, and 2 were tested with two mainstream turbulence intensities. Results clearly showed the effect of blowing ratio and mainstream turbulence intensity. As the blowing ratio increases, the film cooling effectiveness was decreased near the film cooling holes. However, the film cooling effectiveness far downstream from the injection hole was higher for higher blowing ratio. As the mainstream turbulence intensity increased, the film cooling effectiveness was decreased at far downstream from the injection hole.

  • PDF

Electric Properties of the Laminate Type PTC(Positive Temperature Coefficient of Resistance) Thermistor According to Polymer Blowing Agent (유기발포제에 따른 적층형 PTC(Positive Temperature Coefficient of Resistance) 써미스터의 전기적 특성)

  • Lee, Mi-Jai;Hwang, Jong-Hee;Kim, Jin-Ho;Lim, Tae-Young
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.658-663
    • /
    • 2012
  • The electrical properties of a laminated SMD type PTC thermistor for microcircuit protection were investigated as a function of polymer blowing agent addition. Green ceramics for multilayered $BaTiO_3$-based PTCRs were formed by doctor blade method of barium titanate powders; we successfully laminated the sintered ceramic chips to obtain 10 layer chip PTCRs with PTC effect. The sintered density increases with increasing sintering temperature. The electrical properties of the sintered samples were strongly dependent on the calcination and addition of a polymer blowing agent. When $BaTiO_3$ powders containing 0.2 mol% of $Y_2O_3$ were calcined at $1000^{\circ}C$ for 2 hrs, the resistivity jump was of 1-2 orders of magnitude. The resistivity at room temperature increases according to the polymer blowing agent addition. Also, the sample using the calcined powder showed a lower resistivity than that of the sample prepared using powders without calcinations. With an increase in the OBSH, the magnitude of the resistivity jumped as a function of the temperature increase. The resistivity of the sintered bodies after the addition of 0.5 wt% polymer blowing agent at $1290^{\circ}C$ for 2 h was shown to be about $8.5{\Omega}{\cdot}cm$; the jump order of the sintered bodies was shown to be on the order of $10^2$.

Influences of Blowing Jet Type and Jet Angle on the Flow Control of Elliptic Airfoil (타원형 날개꼴의 유동제어에서 브로잉 제트 형태와 제트 각도의 영향)

  • Lee, Ki-Young;Sohn, Myong-Hwan;Jang, Young-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.47-53
    • /
    • 2004
  • An Experimental investigation into the effects of the blowing jet type and jet orientation on the aerodynamic characteristics over an elliptic type airfoil is explored. This study is aimed at expanding the data base of blowing jet application in separation control of elliptic airfoil. Present data includes: surface pressure, blowing jet exit velocity measurements and integrated aerodynamic loads. The experiments were performed for an elliptic airfoil at Reynolds number $8.22{\times}10^5$. The improvement of effects of pulsed jet on the increase of aerodynamic characteristics was significant for the post-stall angle. For reduced mass flow rates, pulsed jet allowed considerably higher lift to be generated. The jet orientation also showed dominant parameter on the separation control Positive jet angle delay or avoid separation, whereas negative jet angle promotes it.

Numerical Study about the Effect of Continuous Blowing On Aerodynamic Characteristics of NACA 0015 Airfoil (연속적 블로잉에 따른 NACA 0015 익형 공력특성 변화에 대한 수치적 연구)

  • Choe, Seong-Yun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.1-11
    • /
    • 2006
  • The effects of continuous blowing on flow control and stall suppression for flows over a NACA 0015 airfoil at low Reynolds numbers were numerically investigated through its parameter variation on unstructured meshes. The aerodynamic force and moment variations due to flow control were examined, along with the stall angle-of-attack change for stall suppression. The results showed that blowing with relatively strong jet increases lift at the cost of drag increment below stall angle. Continuous blowing delays flow stall when it is implemented near the leading edge. When the blowing jet was aligned along the flow direction on the airfoil, the favorable flow control effect was most significant below the stall angle of attack.

The Relationship between Blowing Agents and Inner Temperature at the Preparation of Flexible Polyurethane Forams (연질 폴리우레탄 발포체 제조에서 발포제와 내부 온도와의 관계)

  • Lee, S.W.;Kim, J.H.;Kim, K.H.;Yang, Y.K.;Ahn, C.I.;Myong, Y.C.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.179-185
    • /
    • 1999
  • The effect of blowing agents and inner temperature on the machanical properties of the flexible polyurethane foams were investigated. In the study used that chemical blowing agents is $H_2O$ and support blowing agents. CFC-11, HCFC-114b, dichloromethane, n-penthane, iso-pentane, cyclopentane. The flexible polyurethane foams were foamed by the density of $0.015{\pm}0.002g/cm^3$ and $0.024{\pm}0.002g/cm^3$ which were used in mechanical properties measurements. Inner temperature was measure as long as the preparation of the flexible polyurethane foams of each blowing agents. The density, tensile strength, elongation, tear strength, compression strength and compression set were measured after 48 hours hardening. The result of the study was optimized dichloromethane and cyclopentane at the support blowing agents.

Polycaprolactone Nanofiber Mats Fabricated Using an Electrospinning Process Supplemented with a Chemical Blowing Agent (전기방사공정과 발포제를 이용한 Polycaprolactone 나노섬유 지지체 제작)

  • Kim, Geun-Hyung;Yoon, Hyeon;Lee, Haeng-Nam;Park, Gil-Moon
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.458-464
    • /
    • 2008
  • A successful scaffold should have a highly porous structure and good mechanical stability. High porosity and appropriate pore size provide structural matrix for initial cell attachment and proliferation enabling the exchange of nutrients between the scaffold and environment. In this paper the highly porous scaffold of poly(${\varepsilon}$-caprolactone) electrospun nanofibers could be manufactured with an auxiliary electrode and chemical blowing agent (BA) under several processing conditions, such as the concentration of PCL solution, weight percent of a chemical blowing agent, and decomposition time of a chemical blowing agent. To attain stable electrospinnability and blown nanofiber mats having high microporosity and large pore, a processing condition, 8wt% of PCL solution and 0.5wt% of a chemical blowing agent under $100^{\circ}C$ and decomposition time of $2{\sim}3\;s$, was used. The growth characteristic of human dermal fibroblasts cells cultured in the mats showed the good adhesion and proliferation on the blown mat compared to a normal electrospun mat.