• 제목/요약/키워드: Blowing

검색결과 568건 처리시간 0.021초

탄산음료용 PET병의 바닥면 크랙방지를 위한 Petaloid 디자인 (A Study on the Bottom Design of Petaloid Carbonated PET Bottle to Prevent Bottom Crack)

  • 신희철;류민영;김용환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.154-157
    • /
    • 2001
  • Through this study we investigated the causes of bottom crack. We then redesigned petaloid bottom to prevent bottom crack. We examined the material property variations according to the stretch ratio of PET and analyzed stretches of bottom in blowing processes. We also performed crack test to observe a crack phenomena. The effective stress and maximum principal stress were examined by computer simulation. We concluded that the bottom crack occurs because of not only insufficient strength of material due to the insufficient stretch of PET but also coarse design of petaloid shape. The highest maximum principal stress occurred at valley in petaloid bottom of bottle and this strongly affected the crack in bottom. We redesigned petaloid shape to minimize maximum principal stress, and this result in increasing the crack resistance.

  • PDF

압축공기 토출방식 절삭칩 회수장치 설계 및 해석 (Design and Analysis of Cutting Chip Collecting Apparatus for 5 Head Router Machine)

  • 김현섭;이택민;김동수;최병오;김광영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1133-1136
    • /
    • 2004
  • The structures of airplane consist of sheet metal part, heavy machined part, and so on, which generate enormous amounts of cutting chip when these parts are machined. The cutting chip detoriorates the part quality and production efficiency. Therefore, cutting chip collecting apparatus is necessary for better quality and efficiency. In this study, blowing type cutting chip collecting apparatus was newly proposed and the concept design of the apparatus was examined through numerical analysis. Computations using the mass-averaged implicit 2D Navier-Stokes equations are applied to predict the nozzle flow field. The standard k-e turbulent model are employed to close the governing equations. Consequently, this study shows that the suggested blowing type cutting chip collecting apparatus can be alternative to existing expensive chip collecting apparatus.

  • PDF

전로 취련제어를 위한 신경회로망 및 사례기반추론의 통합 접근 방법 (Hybrid Case Based Reasoning and Neural Networks Approach for Blowing Control of Basic Oxygen Furnace)

  • 김종한;박정준;정성원;박진우
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2003년도 추계학술대회 및 정기총회
    • /
    • pp.201-204
    • /
    • 2003
  • A hybrid artificial intelligence approach based on combining case based reasoning and neural networks is presented. The approach is designed to allow for solving blowing control of BOF(basic oxygen furnace), example of which lie at the core of steelmaking process control systems application in the steel industry. According to this hybrid approach, the system, when faced with a new problem, first retrieves similar cases and neural network is used to solve the problem. Experimental Results indicate that combining case based reasoning and neural network offers an efficient approach to solving control and prediction problem

  • PDF

고Alumina질 다공성 세라믹스의 내열충격성 및 내Slag성 (기공크기에 따른) (Thermal Spalling and Resistance to Slag Attack in Porous High Alumina Ceramic (According to Pore Size))

  • 김병훈;나용한
    • 한국세라믹학회지
    • /
    • 제30권9호
    • /
    • pp.747-753
    • /
    • 1993
  • The investigation was carried out to study the behaviors of the pore size and porosity, the mechanical strength, the resistance to thermal spallings and slag attacks according to particle sizes of starting raw materials in porous high Alumina ceramics. This porous ceramics have been used in processing of the clean steel by the blowing of the inert gas. The required properties in the practice are the suitable pores size, the sharp pores distribution for a uniform blowing of the gas, the strong corrosion resistance to slags and molten metals and the resistance to thermal spalling. The optimized properties in porous high alumina ceramics of the specimen No. 3 was found to be the very low slag intrusion and the superior resistance to thermal spalling because of the suitable pore size of 2.5${\mu}{\textrm}{m}$, the porosity of 30% and the high sinterability.

  • PDF

수직분사 막냉각구멍 내부에서의 3차원 유동특성 (Three-dimensional flow within a film-cooling hole normally oriented to the main flow)

  • 이상우;주성국
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1185-1197
    • /
    • 1997
  • Three-dimensional flow within a film-cooling hole, which is normally oriented to the main flow, has been measured by using a straight five-hole probe for the blowing ratios of 1.0 and 2.0. The length-to-diameter ratio of the injection hole is fixed to be 1.0 throughout the whole experiments. The result shows that the secondary flow within the hole is strongly affected by the main flow and flow separation at the hole inlet. The higher blowing ratio provides less influence of the main flow on the injectant flow. The three-dimensional flow at the hole exit is considerably altered due to the strong interaction between the injectant and main flow. The aerodynamic loss produced inside the injection hole is mainly attributed to the inlet flow separation.

사각홀에서 막냉각 효율 및 열전달계수의 측정 (Measurement of Film Cooling Effectiveness and Heat Transfer of Rectangular-Shaped Film Cooling Holes)

  • 이윤석;이동호
    • 설비공학논문집
    • /
    • 제14권5호
    • /
    • pp.365-376
    • /
    • 2002
  • An experimental study has been conducted to measure the local film-cooling effectiveness and the heat transfer coefficient for a single row of rectangular-shaped holes. four different cooling hole shapes such ai a straight rectangular hole, a rectangular hole with laterally expanded exit, a circular hole and a two-dimensional slot are tested. A technique using thermochromic liquid crystals determine adiabatic film cooling effectiveness values and heat transfer coefficients on the test surface. Both film cooling effectiveness and heat transfer coefficient are measured for various blowing rates and compared with the results of the cylindrical ho1es and the two-dimensional slot. The flow patterns downstream of holes are calculated numerically using a cummercial package. The results show that the rectangular hopes provide better peformance than the cylindrical holes. For the rectangular holes with expanded exit, the penetration is reduced significantly, and the higher and more uniform cooling Peformance is obtained even at relatively high blowing rates.

사각 프리폼 블로우 성형 특성에 관한 수치적 연구 (Numerical study on the blowing deformation characteristics of a square shaped preform)

  • 조승현;송민재;이동원;고영배
    • Design & Manufacturing
    • /
    • 제9권3호
    • /
    • pp.1-8
    • /
    • 2015
  • This study presents the preform injection molding and the blow molding of the injection stretch-blow molding process for PET bottles. The numerical analysis of the injection molding and the blow molding of a preform is considered in this paper using CAE with a view to minimize the warpage and the thickness. In order to determine the design parameters and processing conditions in injection/blow molding, it is very important to establish the numerical model with physical phenomenon. In this study, we appropriately predicted the warpage, deformation and thickness distribution along the product walls.

  • PDF

CFD를 이용한 신축건물 내 지하주차장의 환기설계 (VENTILATION DESIGN OF UNDERGROUND PARKING AREA IN A NEW BUILDING USING CFD)

  • 김진호;양승용;이건태
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.59-63
    • /
    • 2007
  • With the recent increasing demand on the high-performance buildings, there has been a rapid growth in the application of the Computational Fluid Dynamics to the Building design. The conceptual ventilation design of the underground parking area currently under construction is validated using the CFD-ACE+. It has been found that the conceptual ventilation design quantitively satisfies the legal standards. However, the highly concentrated region of CO is predicted. The positions and blowing directions of ventilating lane are changed based on the previously predicted concentration distributions. The highly concentrated region of CO is slightly reduced, but not much change has been observed. Two more fang are installed and the positions and blowing directions of the fans are modified so that the highly concentrated region of CO is minimized.

  • PDF

$N_2$ Splash Slag Coating 시스템 자동화 연구 (A Study on the Automation of the $N_2$ Splash Slag Coating System)

  • 장필장;이기성;신동철;조현철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.92-95
    • /
    • 2002
  • A study on the system automation for the nitrogen splash slag coating in Basic Oxygen Blowing Furnace (BOF) is described. The engineers are trying to do their best efforts to increase the life of converter lining by developing improved refractory material and optimal operation techniques in the steel plants, A new slag coating method is needed to reduce the erosion rates of the refractory. In the current slag costing method, the BOF was swung back and forth. The new method uses the oxygen lance to blow the residual slag to the walls and cone of the converter. The nitrogen gas is used for blowing. This method is developed based on the automation process at factory in POSCO dated on the May 1998. The test results of nitrogen splash slag coating system for the BOF at POSCO are show to show the effectiveness of the system.

  • PDF

반와류 홀의 형상 변화가 막냉각 효율에 미치는 영향 (Effects of Geometry of Anti-Vortex Holes on Film-Cooling Effectiveness)

  • 김준희;김선민;김광용
    • 한국유체기계학회 논문집
    • /
    • 제17권2호
    • /
    • pp.12-23
    • /
    • 2014
  • A parametric study on anti-vortex holes for turbine blade cooling was investigated numerically. Three-dimensional Reynolds-averaged Navier-Stokes equations and shear stress transport turbulence model were used for analysis of anti-vortex film cooling. Validation of numerical results was carried out comparing with experimental data. The cooling performance of anti-vortex holes was assessed by two geometric variables, the ratio of diameters of holes and the lateral distances between the primary hole and anti-vortex hole at blowing ratios of 0.5 and 1.0. The results showed that the spatially-averaged film-cooling effectiveness increases as the ratio of the diameters increases and the distance between the primary hole and anti-vortex hole decreases.